

(ii)

Computer Programming:
Theory and Practicals

Author:
Dr. Satyendra Singh Chouhan

Assistant Professor,

Department of Computer Science and Engineering

Malaviya National Institute of Technology

Jaipur-302017, Rajasthan

Reviewer:
Prof (Dr.) Kusum Deep,

Professor (HAG)

Department of Mathematics

Indian Institute of Technology

Roorkee-247667, Uttarakhand

All India Council for Technical Education
Nelson Mandela Marg, Vasant Kunj,

New Delhi, 110070

(iii)

BOOK AUTHOR DETAILS

Dr. Satyendra Singh Chouhan, Assistant Professor, Department of Computer Science and
Engineering, Malaviya National Institute of Technology Jaipur-302017, Rajasthan

Email ID: sschouhan.cse@mnit.ac.in

BOOK REVIEWER DETAILS

Prof (Dr.) Kusum Deep, Professor (HAG), Department of Mathematics, Indian Institute of
Technology Roorkee-247667, Uttarakhand

Email ID: kusum.deep@ma.iitr.ac.in

BOOK COORDINATOR (S) – English Version

1. Dr. Amit Kumar Srivastava, Director, Faculty Development Cell, All India Council for
Technical Education (AICTE), New Delhi, India

 Email ID: director.fdc@aicte-india.org
 Phone Number: 011-29581312

2. Mr. Sanjoy Das, Assistant Director, Faculty Development Cell, All India Council for Technical
Education (AICTE), New Delhi, India

 Email ID: ad1fdc@aicte-india.org
 Phone Number: 011-29581339

January, 2023

© All India Council for Technical Education (AICTE)

ISBN : 978-81-960576-2-6

All rights reserved. No part of this work may be reproduced in any form, by mimeograph or
any other means, without permission in writing from the All India Council for Technical
Education (AICTE).

Further information about All India Council for Technical Education (AICTE) courses may be
obtained from the Council Office at Nelson Mandela Marg, Vasant Kunj, New Delhi-110070.

Printed and published by All India Council for Technical Education (AICTE), New Delhi.

Laser Typeset by:

Printed at:

Disclaimer: The website links provided by the author in this book are placed for informational,
educational & reference purpose only. The Publisher do not endorse these website links or the
views of the speaker / content of the said weblinks. In case of any dispute, all legal matters to be
settled under Delhi Jurisdiction, only.

(iv)

(v)

ACKNOWLEDGEMENT

The authors are grateful to the authorities of AICTE, particularly Prof. T. G. Sitharam,
Chairman; Prof. M. P. Poonia, Vice-Chairman; Prof. Rajive Kumar, Member-Secretary
and Dr Amit Kumar Srivastava, Director, Faculty Development Cell for their planning to
publish the books on Computer Programming: Theory and Practicals. We sincerely
acknowledge the valuable contributions of the reviewer of the book Prof (Dr.) Kusum
Deep, Professor (HAG), Department of Mathematics, Indian Institute of Technology
Roorkee, for making it students’ friendly and giving a better shape in an artistic manner.

 I would like to acknowledge and thank my students at MNIT Jaipur specially, Praveen
Singh Thakur, Jitendra Parmar, and Aditi Seetha for their constant support without which
book would not have been completed. I would like to express my deepest gratitude to my
parents and my family for being supportive. I would also like to express my thanks to my
brother Vikram for always being there by my side and keeping faith on me. Finally, this
book is dedicated to my wife Sonali and children Prathvi, Samarth & Niyati.

 This book is an outcome of various suggestions of AICTE members, experts and authors
who shared their opinion and thought to further develop the engineering education in our
country. Acknowledgements are due to the contributors and different workers in this field
whose published books, review articles, papers, photographs, footnotes, references and
other valuable information enriched us at the time of writing the book.

Satyendra Singh Chouhan

(vi)

PREFACE

The book titled “Computer Programming: Theory and Practicals” is an outcome of the
experience of my teaching of various computer programming courses. The initiation of
writing this book is to expose fundamentals of computer programming to the engineering
students, and usages of C language to solve computation problems. Keeping in mind the
purpose of wide coverage as well as to provide essential supplementary information, we
have included the topics recommended by AICTE, in a very systematic and orderly manner
throughout the book. Efforts have been made to explain the fundamental concepts of the
subject in the simplest possible way.

 During the process of preparation of the manuscript, we have considered the various
standard textbooks and accordingly sections like questions, Notes, problems solved and
supplementary problems etc are developed. While preparing the different sections,
emphasis has also been laid on motivation behind the topics covered through real world
examples and why it is useful in computational problem solving. The book covers all types
of medium and advanced level problems and these have been presented in a very logical
and systematic manner. The gradations of those problems have been tested over many
years of teaching to a wide variety of students.

 Apart from illustrations and examples as required, the book is also enriched with
numerous programming codes in every unit for proper understanding of the related topics.
In this book, various programming tips also given in form of highlighted notes. It included
the relevant programming practicals and further links for video lectures that explains the
programming examples. A supplementary material, a dedicated video lecture series is also
created. The link for the same is provided at the end of the unit. In addition, besides some
essential information for the users under the heading “Know More” we have clarified
some essential basic information in the appendix and annexure section.

 As far as the present book is concerned, “Computer Programming: Theory and
Practicals” is meant to provide a thorough grounding in programming fundamentals using
C Language. This book will prepare engineering/diploma students to apply the knowledge
of computer programming to tackle 21st century and onward computation problem
solving. The subject matters are presented in a constructive manner so that an Engineering
degree prepares students to work in different sectors or in national laboratories at the very
forefront of computer technology.

 I sincerely hope that the book will inspire the students to learn and discuss the ideas
behind basic principles of Problem Solving using C programming language and will surely
contribute to the development of a solid foundation of the subject. We would be thankful to
all beneficial comments and suggestions which will contribute to the improvement of the
future editions of the book. It gives us immense pleasure to place this book in the hands of
the teachers and students. It was indeed a big pleasure to work on different aspects
covering in the book.

Satyendra Singh Chouhan

(vii)

OUTCOME BASED EDUCATION

For the implementation of an outcome based education the first requirement is to develop
an outcome based curriculum and incorporate an outcome based assessment in the
education system. By going through outcome based assessments, evaluators will be able to
evaluate whether the students have achieved the outlined standard, specific and measurable
outcomes. With the proper incorporation of outcome based education there will be a
definite commitment to achieve a minimum standard for all learners without giving up at
any level. At the end of the programme running with the aid of outcome based education,
a student will be able to arrive at the following outcomes:

Programme Outcomes (POs) are statements that describe what students are expected
to know and be able to do upon graduating from the program. These relate to the skills,
knowledge, analytical ability attitude and behaviour that students acquire through the
program. The POs essentially indicate what the students can do from subject-wise
knowledge acquired by them during the program. As such, POs define the professional
profile of an engineering diploma graduate.

National Board of Accreditation (NBA) has defined the following seven POs for an
Engineering diploma graduate:

PO1. Basic and Discipline specific knowledge: Apply knowledge of basic mathematics,
science and engineering fundamentals and engineering specialization to solve the
engineering problems.

PO2. Problem analysis: Identify and analyses well-defined engineering problems using
codified standard methods.

PO3. Design/ development of solutions: Design solutions for well-defined technical
problems and assist with the design of systems components or processes to meet
specified needs.

PO4. Engineering Tools, Experimentation and Testing: Apply modern engineering
tools and appropriate technique to conduct standard tests and measurements.

PO5. Engineering practices for society, sustainability and environment: Apply
appropriate technology in context of society, sustainability, environment and ethical
practices.

PO6. Project Management: Use engineering management principles individually, as a
team member or a leader to manage projects and effectively communicate about well-
defined engineering activities.

PO7. Life-long learning: Ability to analyse individual needs and engage in updating in
the context of technological changes.

(viii)

COURSE OUTCOMES

By the end of the course the students are expected to learn:

CO-1: Illustrate and explain the basic computer concepts and programming principles.

CO-2: Learn problem-solving through Computer programming.

CO-3: Formulate a solution for a given problem as a well-defined sequence of actions.

CO-4: Translate the sequence of steps (Algorithms) to C programs.

CO-5: Decompose a problem into functions and synthesize a complete program.

CO-6: Design solutions to engineering problems by applying the basic programming
principles of C language.

Mapping of Course Outcomes with Programme Outcomes to be done according to

the matrix given below:

Course Outcomes

Expected Mapping with Programme Outcomes

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7

CO-1 3 3 1 2 1 1 3

CO-2 3 2 2 3 1 1 3

CO-3 2 3 3 2 1 1 3

CO-4 2 3 3 3 1 1 3

CO-5 2 3 3 3 1 1 3

CO-6 2 2 3 3 1 2 3

(ix)

GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE) knowledge level and skill set of the
students should be enhanced. Teachers should take a major responsibility for the proper
implementation of OBE. Some of the responsibilities (not limited to) for the teachers
in OBE system may be as follows:

 Within reasonable constraint, they should manoeuvre time to the best advantage of
all students.

 They should assess the students only upon certain defined criterion without
considering any other potential ineligibility to discriminate them.

 They should try to grow the learning abilities of the students to a certain level before
they leave the institute.

 They should try to ensure that all the students are equipped with the quality
knowledge as well as competence after they finish their education.

 They should always encourage the students to develop their ultimate performance
capabilities.

 They should facilitate and encourage group work and team work to consolidate
newer approach.

 They should follow Blooms taxonomy in every part of the assessment.

Bloom’s Taxonomy

Level
Teacher should

Check
Student should be

able to
Possible Mode of

Assessment
 Create Students ability to create Design or Create Mini project
 Evaluate Students ability to justify Argue or Defend Assignment

Analyse
 Students ability to

distinguish
Differentiate or

Distinguish
Project/Lab

Methodology

Apply
 Students ability to use

information
Operate or

Demonstrate

Technical
Presentation/

Demonstration

Understand
 Students ability to explain

the ideas
Explain or Classify Presentation/Seminar

Remember
Students ability to recall (or

remember)
Define or Recall Quiz

(x)

GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the

responsibilities (not limited to) for the students in OBE system are as follows:

 Students should be well aware of each UO before the start of a unit in each and
every course.

 Students should be well aware of each CO before the start of the course.

 Students should be well aware of each PO before the start of the programme.

 Students should think critically and reasonably with proper reflection and action.

 Learning of the students should be connected and integrated with practical and
real life consequences.

 Students should be well aware of their competency at every level of OBE.

(xi)

ABBREVIATIONS AND SYMBOLS

List of Abbreviations

General Terms

Abbreviations Full form Abbreviations Full form

ALU Arithmetic logic unit LIFO Last In First Out
AMD Advanced Micro Devices MCQs Multiple Choice Questions
AOCC AMD Optimizing C/C++

Compiler
MSVC Microsoft Visual C++

CPU Central Processing Unit PCCM portable C compiler machine
FIFO First In Fast Out QR code Quick response code
GCD Greatest Common Divisor RAM Random-access memory
IDE Integrated development

environment
TCC Tiny C Compiler

List of Symbols

General Terms

Abbreviations Full form Abbreviations Full form

& Ampersand # Hash symbol

` Apostrophe < Opening angle bracket

* Asterisk % Percent sign

\ Backslash . Period

^ Caret + Plus sign

> Closing angle bracket ? Question mark

: Colon " Quotation mark

, Comma } Right brace

$ Dollar sign] Right bracket

= Equal to sign) Right parenthesis

! Exclamation mark ; Semicolon

{ Left brace / Forward Slash

[Left bracket ~ Tilde

(Lest parenthesis _ Underscore

‐ Minus sign | Vertical bar

(xii)

LIST OF FIGURES

Unit 1 Problem solving using computers

Fig. 1.1 : Recipe for making a cup of tea
Fig. 1.2 : Classification of computational devices
Fig. 1.3 : Diagram of calculator
Fig. 1.4 : A stored-program computer
Fig. 1.5 : Simplified representation of computer memory
Fig. 1.6 : Execution of a C program
Fig. 1.7 : Snapshot of Code::blocks IDE for programming
Fig. 1.8 : First program in C
Fig. 1.9 : Program using minimum possible separators
Fig. 1.10 : Program written with proper spacing
Fig. 1.11 : Example of declaring and defining the variables
Fig. 1.12 : Input/output in C

4
4
4
5
6
10
12
12
15
15
18
20

Unit 2 Operators and Input -Output in C

Fig. 2.1 : Demonstration of arithmetic and assignment operators
Fig. 2.2 : Demonstration of relational operators
Fig. 2.3 : Demonstration of the logical AND operator
Fig. 2.4 : Demonstration of the logical AND operator
Fig. 2.5 : Demonstration of the logical OR operator
Fig. 2.6 : Demonstration of the logical OR operator
Fig. 2.7 : Demonstration of the logical NOT operator
Fig. 2.8 : Demonstration of the bitwise operators
Fig. 2.9 : Demonstration of the unary operators
Fig. 2.10 : Demonstration of the increment and decrement unary operators
Fig. 2.11 : Demonstration of the ternary operator
Fig. 2.12 : Data types from top to bottom in increasing order of memory size
Fig. 2.13 : Demonstration of the implicit type conversion
Fig. 2.14 : Demonstration of the explicit type conversion
Fig. 2.15 : Precedence and the associativity of the operators
Fig. 2.16 : Evaluation of x=2+3*4-7/2
Fig. 2.17 : Evaluation of x=2+3*4-7/2<6<12
Fig. 2.18 : Evaluation of x=2+3*4-7/2<6<12 && 10<71/6
Fig. 2.19 : Demonstration the use of various integer and floating-point conversion specifiers
Fig. 2.20 : Demonstration the use of string and character conversion specifier
Fig. 2.21 : Demonstration the concept of field width
Fig. 2.22 : Demonstration of the integer conversion specifiers
Fig. 2.23 : Demonstration of the writing a file
Fig. 2.24 : Demonstration of reading a file

34
36
36
37
37
38
38
40
41
43
45
46
46
47
48
49
49
50
54
55
56
57
60
61

(xiii)

Unit 3 Control Statements in C

Fig. 3.1 : Flowchart of computing the average temperature of all the working days of a month
Fig. 3.2 : Types of control statements
Fig. 3.3 : Flowchart of if statement
Fig. 3.4 : Demonstration of the if statement
Fig. 3.5 : Interpretation of if statement
Fig. 3.6 : Flowchart of if..else statement
Fig. 3.7 : Demonstration of if..else statement
Fig. 3.8 : Flowchart of if-else-if statement
Fig. 3.9 : Demonstration of if-else-if statement
Fig. 3.10 : Flowchart of nested if-else statement
Fig. 3.11 : Demonstration of nested if-else statement
Fig. 3.12 : Demonstration of dangling else
Fig. 3.13 : Demonstration of dangling else
Fig. 3.14 : Flowchart of the switch statement
Fig. 3.15 : Demonstration of switch statement
Fig. 3.16 : Flowchart to play song playlist
Fig. 3.17 : Flow chart of while loop
Fig. 3.18 : Program to print numbers from 0 to 4 using a while loop
Fig. 3.19 : Flowchart of for loop
Fig. 3.20 : Program to print numbers from 0 to 4 using a for loop
Fig. 3.21 : Flowchart of the do-while loop
Fig. 3.22 : Program to print numbers from 0 to 4 using a do-while loop
Fig. 3.23 : Demonstration of the break statement
Fig. 3.24 : Demonstration of the continue statement
Fig. 3.25 : Example to check prime number
Fig. 3.26 : Calculator using the do-while loop
Fig. 3.27 : flowchart of the nested loop
Fig. 3.28 : Demonstration of the nested loop
Fig. 3.29 : Program to calculate the factorial
Fig.3.30: Demonstration of the goto statement
Fig.3.31 Flowchart to check even or odd number

71
72
73
73
74
75
75
76
77
78
79
80
80
81
82
83
84
85
86
87
89
90
91
92
93
94
95
96
97
98
107

Unit 4 Arrays and Functions in C

Fig. 4.1 : Array Example
Fig. 4.2 : Runtime initialization of an array
Fig. 4.3 : Memory allocation and address representation in an array
Fig. 4.4 : Memory Layout
Fig. 4.5 : Visualization and components of the stack
Fig. 4.6 : Visualization of the variable and pointer
Fig. 4.7 : Demonstration of the pointer

111
112
113
114
115
116
117

(xiv)

Fig. 4.8 : Demonstration of the arithmetic operations in pointer
Fig. 4.9 : Demonstration of different types of pointers
Fig. 4.10 : Demonstration to read a string from the user
Fig. 4.1 1: Representation of 2-Dimensional Array (marks)
Fig. 4.12 : Different ways to initialize a 2-D array
Fig. 4.13 : 2-Dimensional array (marks) representation in a row and column-major order
Fig. 4.14 : Types of function
Fig. 4.15 : Demonstration of working of a smallest function
Fig. 4.16 : Demonstration of working of a cube function
Fig. 4.17 : Demonstration of call by value method of function calling
Fig. 4.18 : Demonstration of call by reference method of function calling
Fig. 4.19 : Program to calculate the length of the hypotenuse of a right-angled triangle
Fig. 4.20 : Program to calculate the length of the hypotenuse of a right-angled triangle
Fig. 4.21 : Demonstration of passing an array to functions
Fig. 4.22 : Demonstration of use of the auto variable
Fig. 4.23 : Demonstration of the use of extern variable
Fig. 4.24 : Demonstration of the use of static variable
Fig. 4.25 : Demonstration of use of the register variable

118
119
121
122
123
124
125
129
130
131
133
134
135
137
138
139
140
141

Unit 5 Recursion and Recursive Solutions

Fig. 5.1 : Iterative and Recursive way to find the car key
Fig. 5.2 : Representation of the base and recursive case
Fig. 5.3 : Demonstration of the recursive function
Fig. 5.4 : Step-by-step working of the recursive function
Fig. 5.5 : Demonstration of the tail recursion
Fig. 5.6 : Demonstration of the head recursion
Fig. 5.7 : Demonstration of the tree recursion
Fig. 5.8 : Demonstration of the nested recursion
Fig. 5.9 : Graphical representation of the indirect recursion
Fig. 5.10 : Demonstration of the indirect recursion
Fig. 5.11 : Tower of Hanoi
Fig. 5.12 : Demonstration of the Tower of Hanoi
Fig. 5.13 : Graphical representation of the binary search
Fig. 5.14 : Demonstration of the Binary Search
Fig. 5.15 Demonstration of the command line arguments

151
152
152
153
154
154
155
155
156
156
157
158
159
161
166

(xv)

LIST OF TABLES

Table 1.1 : Lists of the keywords
Table 1.2 : Memory required and ranges of various data types
Table 2.1 : Assignment operators in C language
Table 2.2 : Different types of relational operators
Table 2.3 : Basic bitwise operators
Table 2.4 : Integer and Floating-point Conversion Specifiers
Table 2.5 : Commonly used escape sequences
Table 2.6 : The basic functions of handling a file in C

14
16
33
35
39
53
55
58

(xvi)

CONTENTS

 Foreword
 Acknowledgement

 Preface
 Outcome Based Education
 Course Outcomes
 Guidelines for Teachers
 Guidelines for Students

 Abbreviations and Symbols
 List of Figures

 List of Tables

iv

v

vi

vii

vii

ix

x

xi

xii

xv

Unit 1: Problem solving using Computers

 Unit specifics

 Rationale

 Pre-requisites

 Unit outcomes

1.1 Introduction

 1.1.1 Computational thinking and problem solving

1.2 Computing devices

1.2.1 Fixed program computers

1.2.2 Stored program Computer

1.2.3 Computer memory representation

1.3 How to communicate with computers

1.3.1 Machine language

1.3.2 Assembly language

1.3.3 Natural language

1.4 Programming language

 1.4.1 Types of Instructions

1.5 Introduction to C programming language

1.5.1 Execution of a C program

1.5.2 Need of a compiler

1.5.3 Different available compilers for C and the Integrated Development Environments (IDEs)

1.5.4 First program in C

1.6 Basic elements of C language

 1.6.1 Keywords

1.6.2 Identifiers

 1.6.3 Separators

1-28

1

2

2

2

3

3

4

4

5

6

7

7

7

7

8

9

9

10

11

11

12

14

14

14

14

(xvii)

 1.6.4 Constant, Data Types and Variables

 1.6.5 Pre-define Function and Syntax

 1.6.6 Operators

1.7 Input/output in C (Practice example)

Unit summary

Exercises

Practical

Know more

References and suggested readings

Unit 2: Operators and Input-Output in C

 Unit specifics

 Rationale

 Pre-requisites

 Unit outcomes

2.1 Expressions and Operators in C
2.2 Binary Operators

2.3 Unary Operator

2.4 Ternary Operator

2.5 Implicit and explicit-type conversions

2.5.1 Implicit type conversion

2.5.2 Explicit type conversion

2.6 Precedence and associativity of C operators

2.7 Input and Output in C Programming

2.7.1 Output with printf function

 2.7.1.1 Printing integers and floating-point numbers

 2.7.1.2 Printing strings and characters.

2.7.2 Escape sequence

2.7.3 Field widths and precision in printf

2.8 Input using scanf function

2.9 Input and Output from Files

 2.9.1 What is a file?

 2.9.2 File operations

 Unit summary

 Exercises

 Practical

 Know more

 References and suggested readings

Unit 3: Control Statements in C

 Unit specifics

15

19

19

19

21

23

26

26

28

29-68

29

29

30

30

31

31

41

44

45

46

47

47

50

51

52

55

55

56

57

58

58

59

61

63

66

67

68

69-108

69

(xviii)

 Rationale

 Pre-requisites

 Unit outcomes

3.1 Introduction

3.2 Control Statements

3.3 Selection Statement

3.3.1 The if statement

3.3.2 The if-else statement

3.3.3 The if-else-if statement

3.3.4 The nested if-else statement

3.3.5 The switch statement

3.4 Repetition Statement

 3.4.1 Entry control loop

3.4.2 Exit control loop

3.4.3 Nested loop

3.4.4 goto statement

Unit summary

Exercises

Practical

Know more

References and suggested readings

Unit 4: Arrays and Functions in C

 Unit specifics

 Rationale

 Pre-requisites

 Unit outcomes

4.1 Introduction

4.2 Array

 4.2.1 Array Declaration and Initialization

4.3 Memory Organization in C

4.4 Pointers

4.4.1 Arithmetic operation in pointer

4.4.2 Types of pointers

4.5 String as Array of characters

4.5.1 Initialization of a String

4.5.2 Reading a String from User

4.6 Multidimensional Array

4.7 Function

4.7.1 Advantages of using Functions

4.7.2 Types of functions

4.7.3 Function definition, decoration, and calling

4.7.4 Function Calling

69

69

70

71

72

72

72

74

76

78

82

83

85

89

96

98

99

101

106

107

108

109-152

109

109

110

110

111

111

112

114

117

119

120

121

122

122

123

127

127

127

128

132

(xix)

4.7.5 Passing array to Functions

4.8 Storage classes

Unit summary

Exercises

Practical

Know more

References and suggested readings

Unit 5: Recursion and Recursive Solutions

 Unit specifics

 Rationale

 Pre-requisites

 Unit outcomes

5.1 Introduction

5.2 Types of recursions

 5.2.1 Direct recursion

 5.2.2 Indirect recursion

5.3 Recursive Solutions

5.3.1 Factorial

5.3.2 Towers of Hanoi

5.3.3 Binary search

Unit summary

Exercises

practical

Know more

References and suggested readings

Appendices

Appendix - A : Standard Library Functions

 Appendix - B : Creating Libraries

 Appendix - C : List of suggested topic for practical

References for Further Learning

CO and PO Attainment Table

Index

137

140

144

146

150

150

151

153-170

153
153

153

154

155

157

157

160

161

161

161

163

165

165

168

168

170

171-175

171

174

175

176

177

178

Computer Programming: Theory and Practicals | 1

d

UNIT SPECIFICS

Through this unit, we have discussed the following aspects:

 Basic knowledge of computers;

 Computational thinking and problem-solving;

 Aspects of the programming language;

 Giving instructions to a computer using a programming language;

 Introduction to C language and its component;

 Basic programming examples with explanation;

The topics are discussed with various examples for generating further curiosity and creativity and
improving problem-solving capacity.

 Besides giving a large number of multiple choice questions as well as questions of short and
long answer types marked in two categories following lower and higher order of Bloom’s
taxonomy, assignments through several numerical problems, a list of references, and suggested
readings are given in the unit so that one can go through them for practice. It is important to note
that for getting more information on various topics of interest, some QR codes have been provided
in different sections, which can be scanned for relevant supportive knowledge.

 After the related practical, based on the content, there is a “Know More” section. This section
has been carefully designed so that the supplementary information provided in this part becomes
beneficial for the users of the book. This section mainly highlights the initial activity, examples of
some interesting facts, analogy, history of the development of the subject focusing on the salient
observations and finding, timelines starting from the development of the concerned topics up to the
recent time, applications of the subject matter for our day-to-day real life or/and industrial
applications on a variety of aspects, case study related to environmental, sustainability, social and
ethical issues whichever applicable, and finally inquisitiveness and curiosity topics of the unit.

1 Problem solving using
Computers

2 | Problem solving using computers

RATIONALE

This introductory unit on problem-solving through computers helps students to get a basic idea of
problem-solving and computational thinking. It gives basic knowledge of a computer, its
components from the programming perspective, and explains the idea of incorporating problem-
solving skills in a computer through programming. Instead of directly going to the programming
language, this chapter clarifies to the reader the need for a programming language to solve a
computational problem using computers. It explains the various aspects of a programming
language with examples. Next, it covers the introduction of the C language and its features. Though
this book will use the C language for computer programming, most of the fundamental part covered
in this unit is applicable to all programming languages.

 Computer programming is the core subject in the computer science field. Using any computer
programming, one can solve computational problems using computers. Moreover, all the software
and applications are built using various programming languages. The practical applications of
this book cover, all the computational devices, software, web applications etc. that one interact
with in the daily life.

PRE-REQUISITES

Basic Mathematics

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U1-O1: Describe the problem solving and computational thinking

U1-O2: Describe the basic knowledge of a computer and its component

U1-O3: Explain various aspects of a programming language

U1-O4: Realize the role of computer programming in solving real-world problems

U1-O5: Understand C programming fundamentals

Unit-1

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6

U1-O1 2 3 2 - - -

U1-O2 3 2 2 2 - -

U1-O3 2 2 3 - - -

U1-O4 2 3 3 1 - -

U1-O5 2 2 2 3 - -

Computer Programming: Theory and Practicals | 3

1.1 Introduction

Now computers are everywhere. Here, a computer is not only referred to as a Laptop or Desktop
but any device that performs some computation. Any computing device does two main tasks:
performing computation and remembering the computation results. The typical computer sitting on
a table or a desk performs a billion calculations in a second. We utilize them to do multiple tasks
speedily and more accurately. For instance, we can reserve train tickets online using a computer or
smartphone.

 For most of human history, the computation was constrained by the speed of calculation of the
human brain and the capability of manually recording the results of computations. We hope that by
reading this book, you will feel comfortable using computational thinking to solve many of the
problems you come across during studies, work, and in institutes. The term "computerization"
typically refers to the effective use of computers to create software that automates any repetitive
human work. Computers are used to solve various problems; therefore, one of the essential skills a
computer science student should possess is problem-solving. It is important to note that computers
cannot solve problems independently. We must provide clear, step-by-step directions on how to
solve a given problem. The effectiveness of a computer in solving a problem depends on how
exactly and correctly the problem is defined, the algorithm is created to resolve it, and then
implements the algorithm by a programming language. Thus, problem-solving is the process of
recognizing a problem, creating an algorithm to solve it, and then implementing it using a
programming language.

1.1.1 Computational thinking and problem solving

Before diving into the problem-solving process using a programming language (in this book, we
will follow the C language), let us first understand computational thinking. The knowledge can be
divided into two parts: Declarative knowledge and Imperative knowledge.

A. Declarative knowledge: Declarative knowledge refers to statements that are fact. For example,
2, 4, and 6 are even numbers. Similarly, 3, 5, and 7 are odd numbers. Though, these statements are
facts and contain some knowledge. But still, it does not tell us how we can check if an arbitrary
number is odd or even.

B. Imperative knowledge: It is something like an instruction (or set of instructions), or informally,
we can call a recipe that gives the information about how to do certain things. For example,
informally, we can check if a number is odd or even by performing the following steps.

1. Take an arbitrary number, let's say n.
2. Divide the number n by two and observe the remainder, let's say r.
3. If r is equal to 0, then we can say the number is even.
4. Otherwise, if r is a non-zero value, then the number is odd.

By performing the above step-by-step instructions, we can check whether any number is even or
odd. This type of knowledge is called imperative knowledge, and in computer science, this step-
by-step description is called an Algorithm (or pseudocode). It is like a recipe from a cookbook
such that you will eventually get the desired result if performed correctly.

4 | Problem solving using computers

Another real-world example of a recipe for making a cup of tea is given in Fig.1.1.

1. Place water in a Tea-Pot
2. Boil the water
3. Put tea leaves in Tea-Pot
4. Add milk into the Tea-Pot
5. Add some sugar cubes
6. Boil for some time
7. Pour the tea into a cup using a tea strainer

Fig.1.1 Recipe for making a cup of tea

1.2 Computing devices
There are two ways to perform a task from a computing device. One is to develop the
machine hardware in such a way that it will perform the specific task - Fixed program
computers. In another way, instead of fixing instructions during the machine hardware
development, the computing device takes these instructions from users/operators and
performs the given task based on the instructions given - Stored program computers.

Fig.1.2 Classification of computational devices.

Scan QR
code for
details

1.2.1 Fixed program computers
When a computing device performs only a specific task, i.e., it
cannot be programmed for other tasks. For example, a calculator
can only perform the arithmetic or logic operations available. You
give the numbers as the input, and when you press ‘+’ it performs
addition. Similarly, all the operations available can be performed.
However, you cannot perform any other computation which is not
available in the calculator.

Fig.1.3 Diagram of calculator

Question 1.1 How can we give this task (set of instructions) to a computing device?

Computer Programming: Theory and Practicals | 5

1.2.2 Stored program Computer

In a stored program concept, the computer performs the task stored or given to the computer.
Modern computers are based on this concept. The simplest block diagram of a Stored programmed
computer is shown in Figure 1.4. It contains three fundamental components.

Fig.1.4 A stored-program computer

A. Central Processing Unit (CPU): It is the brain of the computer which executes the programs.
It plays a crucial role in program executions without which the program cannot be run. We can say
that a program is executed when the CPU performs the instructions received from the program.

B. Memory: Memory can be viewed as the computer's workspace where the computer stores the
program/application and data required for execution. For instance, writing an essay using a word
application. During the execution of that task, both essay and word processing applications will be
stored in the memory.

C. Input/Output: Input is data that a computer receives from another device or any user through
an input device. Input devices are the components that gather the data and send it to the computers.
So, a device that gives the input to the computer is called the input device. For example, keyboard,
QR code scanner, mouse, etc. The optical and disk drives are also referred to as input devices
because the program and required data are loaded into the main memory.

 Output is the data produced by the computer for the user or other devices. Output data can be a
list of the names, graphic images, and results of a computation. The output data is sent through the
output devices. It sends the data from the computer to another computer or user. Basic output
devices are monitors, printers, etc. CD recorders and disk drives are the output devices as they store
the output data sent by the computer.

The CPU is intended to perform operations like:

1. Reading the data from the memory.
2. Subtracting one number from another number
3. Adding two numbers
4. Dividing one number by another number
5. Multiplying two numbers
6. Calculating a value is equivalent to another value
7. Moving data across memory locations

6 | Problem solving using computers

The above list demonstrates that the CPU only handles basic data operations. However, the CPU
does not act on its own. The goal of a program is to instruct the CPU on what to do. The CPU
performs operations as a result of this list of instructions. These step-to-step instructions, written in
any programming language, are also known as a Program or Application.

 The data (input/output) associated with every computation problem can be of any type such as
numbers, characters, or words (strings). Further, numbers can be of different types, such as integers
like 0, 1, 2, 3, -1, -2, etc., and fractional values 1.2, 0.6, and so on. Before study that how to use
different types of data in C. Let us first understand how data is stored in the computer.

 1.2.3 Computer memory representation

As we know, computers work on binary data representation (0s and 1s). The computer's memory
is split into tiny units called bytes. A single letter or small number is stored in a single byte. To
perform the tasks, the computer has lots of sequences of bytes. The majority of modern computers
have billions of bytes of memory.

 Each byte of memory can be identified by a unique address. It is similar to the address
of a house in the real world. Houses have unique addresses associated with
them. Different types of data require different memory sizes. A simplified
representation of computer memory is shown in Figure 1.5.

Fig.1.5 Simplified representation of computer memory

Scan QR
code for

video
lecture

The next question is how to write this step-to-step program or communicate with computers.

Question 1.2 How to communicate set of instructions with a computer?

Computer Programming: Theory and Practicals | 7

1.3 How to communicate with computers

Now, the question is how to give a task (set of instructions) to the computer. Here, there are two
aspects: hardware view and software view. From a hardware perspective, we give the task through
input devices. From a software perspective, we have to give a task in a language that the computer
understands. We are going to emphasize the latter perspective. First, we must understand how
computers understand instructions and how humans communicate.

1.3.1 Machine language

 The computer architecture comprises several billion transistors turned on by the electronic signals
it receives. A transistor’s on and off states are represented by the binary digits 1 and 0, respectively.
Only binary-coded instructions are understood and carried out by the computer. It is unable to carry
out any instructions given in a different format. As a result, we must provide the computer
instructions in binary. Therefore, all our computer programs must be written in a binary language
(series of 0s and 1s).

 A program's instructions direct the CPU to carry out particular actions. Here is an illustration of
a command that might be present in a program:

10110000

This is just a string of 1s and 0s to a user. However, to a CPU, it is an instruction to operate. This
is a genuine Intel microprocessor instruction. It instructs the CPU to move a value into the
microprocessor. However, this is an operating instruction to a CPU.

1.3.2 Assembly language

It is not practical for individuals to develop a program in machine language, even though a
computer's CPU can only understand it. As a substitute for machine language, assembly language
was developed in the earlier days of computing. Assembly language employs mnemonics, or short
words, in place of binary numbers to represent instructions. For instance, the mnemonics add, mul,
and mov in assembly language often refers to adding, multiplying, and transferring values to
different locations in memory, respectively.

 However, the CPU cannot run assembly language programs. An assembly language program is
converted to a machine language program using a specialized program called an assembler.
Assembly language is usually used as a replacement for a machine language. However, Assembly
language still has some drawbacks. It necessitates extensive knowledge of the CPU like a machine
language. Even the most straightforward program written in assembly language requires you to
write numerous instructions. Assembly language is also known as a low-level language as it is
similar to machine language.

1.3.3 Natural language

However, even with assembly language, it is not easy for humans to write every program in
assembly language. While computers can only process binary language, humans are proficient at

8 | Problem solving using computers

conveying instructions in English. Humans understand and communicate in natural languages like
English, Hindi, Tamil, etc. However, Human understandable languages are ambiguous. For, e.g.,
the sentence “I saw a girl on the hill with a telescope” is ambiguous. The sentence can be interpreted
as either seeing a girl with a telescope on the hill or seeing a girl holding a telescope.

 In summary, there are three requirements for a high-level language to communicate with
computers

1. Similar to human-like (natural) language: for ease of use

2. Unambiguous in nature: only a single meaning of an instruction

3. Mediator (A Program/Application): that can convert the language into an understandable
computer format.

 Therefore, there is a need for a programming language similar to an English-like language, has a
single meaning for each instruction, and can be converted into computer machine language. A
detailed description of programming languages is given in the next section.

1.4 Programming language

Various programming languages fulfill the above three requirements to communicate with
computers like C, C++, Java, Python, and so on. There is no ideal language (although some could
be considered the worst). For various applications, different languages work better or worse. For
example, MATLAB is a great language for working with matrices and vectors. Programs that
manage data networks can be written effectively in C. For creating websites, PHP is an impactful
language. Furthermore, Python is a useful general-purpose language. This book focuses on the C
language to understand all the programming concepts. There are three aspects of any programming
language.

1. Syntax: Syntax determines whether combinations of symbols and characters are well-formed
or not in any language. For instance, the sentence “run swim fly” is not syntactically correct.
The English language does not support syntax in the form of <verb><verb><verb>.
Similarly, in the C language, the primitives +10 20 are not in the valid sequence; however,
10+20 is the valid sequence.

2. Statics Semantic: The static semantics are responsible for checking whether a string is valid
based on the syntactically or not. For example, “We am friends” is in the form of
<noun><verb><adjective>, is a syntactically correct sentence, but it is not a correct
English sentence. Because “We” is plural and the verb “am” is singular. This kind of error is
known as static semantic error. In the C programming language, 2.34*‘x’ is syntactically
correct but gives a static semantic error because the fractional value cannot be multiplied by
the character.

3. Semantic: The semantics of a language associates a meaning with each syntactically correct
string of symbols with no static semantic errors. The meaning of the sentence may be hazy or
unclear in natural languages. For instance, the sentence “call me a taxi, please” can be either a
person’s name is a taxi, or he wants to go somewhere by taxi. For the smooth functioning

Computer Programming: Theory and Practicals | 9

computer needs proper and clear instructions, that’s why programming languages ensure that
each program has only one meaning.

With any programming language, syntax errors are most likely to occur. However, it is easy to
handle because all the programming languages (their compilers) detect the syntax errors and report
them to the programmers. Semantic errors are hard to handle because programming language does
not indicate them. It is mostly due to bad logic/operations the programmer writes. So, finding and
fixing them is the programmer's responsibility.

1.4.1 Types of Instructions

Normally, the CPU executes instructions (written in any programming language) one by one in a
sequential manner. This is called the flow of execution (or flow of control). However, concerning
a particular problem, the control flow might change. For example, see the example of identifying
odd and even numbers (reiterating the example given in Section 1.2).

1. Take an arbitrary number, let's say n.

2. Divide the number n by two and observe the remainder, let's say r.

3. If r is equal to 0, then we can say the number is even.

4. Otherwise, the number is odd if r is a non-zero value.

 In this example, the CPU will start the execution from step 1. With the normal flow of control, it
will go to step 2. However, if you see the example, the execution of step 3 (or 4) depends on the
result of step 2 and only one step (3 or 4) will be executed. Moreover, some instructions might
need to be executed more than once, for example, adding a number 100 times.

 Therefore all the programming languages provide different types of instructions for various tasks.
In C language, all these instructions can be divided into three types.

1. Type Declaration Instruction: These instructions are used to declare required variables in the
C program.

2. Arithmetic Instruction: These instructions are used to perform arithmetic operations in C
programming.

3. Control Instruction: These types of instruction are used to control the flow and execution
sequence of the statements in the c program.

In the following sections, we will see the C language constructs, features, data types, and
instructions that can be used to solve a problem.

1.5 Introduction to C programming language

C programming is a high-level and general-purpose computer programming language developed
by Dennis Ritchie in 1972. It was primarily developed as a system programming language to write
operating systems. The C language's primary characteristics are low-level memory access, a limited

10 | Problem solving using computers

set of keywords, and a clean style, which make it appropriate for system programs like operating
systems or compiler development. Also, the C programming language is case-sensitive, which
means that capital and small alphabets have distinct meanings.

1.5.1 Execution of a C program

This section describes the execution of a C program. A file with the extension '.c' is a source file.
When the compiler compiles the source file, then at each step, it creates a new file. These new files
have the same name as the source file but have a different extension. The complete execution of a
C program is shown in Figure 1.6.

Fig.1.6 Execution of a C program

Code Editor: This is the first step of writing a program. We require an editor/IDE where the source
code of a program can be written and saved with a .c extension. The .c extension helps the compiler
to recognize a C program file. Let us say there is a C program file called FirstProgram.c. It is the
source file containing the program’s code.

Preprocessor: Preprocessor takes source code (FirstProgram.c) as input and eliminates the
comments, expands the include file and macros, etc. The preprocessed file is stored with the .i
(FirstProgram.i) extension and send to the compiler.

Compiler: In this step, the compiler checks the errors in the code (FirstProgram.i). If there are no
errors, the C compiler saves it with the .obj extension as an object file. As a result, FirstProgram.obj
will be created. This .obj file cannot be executed. The Linker continues the process, producing an
executable file with the .exe extension.

Computer Programming: Theory and Practicals | 11

Linker: Let us start by clarifying that library functions are a component of C software, not any
specific C program. As a result, the compiler is unaware of how any function, including printf and
scanf, actually works. These functions' definitions are kept in the corresponding libraries, which
must be linked. The Linker reads #include a keyword, it links the header file, written inside the
triangular bracket (<stdio.h>) with the objective file. The header files provide access to the
input/output function like printf, scanf, etc. Once the linker links all the library functions with the
objective file, the program will be converted into the .exe file. Hence, the executable file
firstProgram.exe will be generated.

Loader: The loader works whenever we instruct a specific application to execute. The loader loads
the given .exe (FirstProgram.exe) file in the RAM. After loading, the file loader will update the
program's starting address and inform the CPU.

CPU: In this step, the CPU takes all the instructions from the loaded executable file and executes
them.

1.5.2. Need of a compiler

A compiler is a tool that works as a mediator between humans (users) and computers. A compiler
can understand the source code and translate it into the machine (low-level) code. C is a high-level
language that humans can understand. Humans (users) send commands in a high-level language to
the computer. But, the computer only understands machine (low-level) language. We, therefore,
need a compiler to bridge this gap, which converts high-level language into low-level language.

1.5.3 Different available compilers for C and the Integrated Development Environments
(IDEs)

1. C Compilers: There are over 50 compilers available for C language. The most recent compilers
are from 2017 (AOCC by AMD), but several were created in the 1970s (PCCM by Bell Labs).

Different compilers are required to optimize the compiled C code for particular hardware and
software environments. For instance, AOCC is optimized for AMD systems, while ICC by Intel is
optimized for Intel systems. Similar to this, other compilers focus on various operating systems.
Acorn C, Clang, MSVC, Open64, TCC, gcc, and MinGW are a few of the available compilers.

2. IDEs: IDE is an application that facilitates the development of other applications. They are
typically designed to facilitate the work of developers and enhance their output by offering a variety
of practical features, including code editors, debugging assistance, compilers, auto code
completion, and many more. There are numerous C and C++ IDEs available to do programming
without hassle. Some of them are Visual Studio, Eclipse, Dev C++, Xcode, Code::Blocks, Turbo
C, CodeLite, NetBeans etc.

Question 1.3 why do we need a compiler?

12 | Problem solving using computers

Fig.1.7 Snapshot of Code::blocks IDE for programming

1.5.4 First program in C

A programming language can only be learned by writing programs in it. The first program in the C
language is:

1. /* First C program: Hello programmers!*/
2. #include<stdio.h>
3. int main()
4. {
5. printf("Hello programmers!");
6. return 0;
7. }

Fig.1.8 First program in C

Explanation:

/* First C program: Hello programmers!*/

In the C language, we use comments to provide information about lines of code. During the
compilation process compiler skips the data written inside the comment box. Comments can be
made in two ways: single-line comments and multiple-line comments.

Computer Programming: Theory and Practicals | 13

Single-line comments are used when only one line needs to be skipped. A double forward slash
(//) is used to denote the single-line comment.

 // this is the single-line comment.

Multiple-line comments: We use the symbol /*... */ for multi-line comments. It is used when we
need to skip more than one line or paragraph.

 /* this is

 multiple line comments. */

#include<stdio.h>

#include used for the inclusion of the standard libraries or header files. These libraries store the
definitions of the predefined functions.

The input-output functionality is handled by a header file called stdio.h. It has the definition of
input-output functions like printf and scanf etc.

 int main()

The main function serves as the entry point for all C programs. All the instructions should be written
or referred to inside the main() function.

{

 //instructions

 return 0;

}

The braces {and} specify the function block's scope. After the execution of the function program
will return to the called place with the returned value. In terms of the main() function, the program
finishes the execution and returns to the environment where the program was executing. The main()
function returns an integer representing the program's exit status, where 0 represents the successful
exit.

printf("Hello programmers!");

In the above line, there is only one statement in this program: printf (). The printf() function is
predefined in stdio.h header file, which displays the characters written inside the double quote (“
”) on the output screen (Monitor).

14 | Problem solving using computers

1.6 Basic elements of C language

C programming language has the following important elements:
1. Keywords
2. Identifiers
3. Separators
4. Constants, Data Types and Variables
5. Pre-define functions and Syntax
6. Operators

1.6.1 Keywords

Every language has certain words that can be used to construct a statement. The C programming
language supports some words with their specific meanings, which are used to construct the c
programming statements or instructions. These special words are referred to as reserved words or
keywords. The C programming language has 32 keywords, as shown in Table 1.1. Each of the 32
keywords has been pre-defined, and the compiler already knows their meaning.

Table 1.1 Lists of the keywords

if else double int float struct break auto

long switch case enum register typedef char extern

return union const short unsigned continue for signed

void default goto sizeof volatile do static while

1.6.2 Identifiers

The identifier is the name or identity used to recognize the variables, functions, etc. Identifiers are
created by combining the alphabets underscore (_) and digits. It is case-sensitive, which means
uppercase and lowercase alphabets have distinct meanings. The identifier's first letter must be an
underscore or an alphabet. The pre-defined or reserved words cannot be used as identifiers (e.g.,
float, int, for, etc.).

 1.6.3 Separators

Separators are used to separate one programming component or element from one another. For
instance, separating identifiers from identifiers, keywords from keywords, one identifier from
another, etc. They resemble the punctuation marks used in English paragraphs.

Every word is separated by the white space, whereas statements are separated using semicolons (;)
in C programming. There is a total of 14 separators supported by C programming. For Example: ,
; : ‘ ‘ “ “ { } space etc.

Computer Programming: Theory and Practicals | 15

Note: If the proper separators are used, the entire C program can be written in just two lines. The
example is shown in Fig. 1.9.

1. #include <stdio.h>
2. int main(){printf(" Hello programmers!"); return 0;}

Fig.1.9 Program using minimum possible separators

The program in the above example (Fig.1.9) uses the minimum possible separators to display the
message “Hello programmers!”. Nevertheless, it is less readable and regarded as a bad
programming practice. We should include suitable separators (indentation and spaces) to make a
program understandable.

Think about the same program written correctly with separators that is much easier to read than the
previous version (Figure 1.10).

1. #include<stdio.h>
2. int main()
3. {
4. printf(“Hello programmers!”);
5. return 0;
6. }

Fig.1.10 Program written with proper spacing

1.6.4 Constant, Data Types and Variables

A constant is a value or variable that remains unchanged throughout the entirety of the program.
For example: 5, 25, 10, ‘A’, etc. In C language, constants are categorized into two types:

1. Alphanumeric constants
2. Numeric constants

1. Alphanumeric Constant: We can represent alphabets and 0–9 numbers using this constant.
Alphanumeric constants are further classified into two types:

a) Character constant
b) String constant

Any data represented in a single quote are called a character constant for example ‘A’, ‘H’, ‘x’,
‘m’, ‘#’, ‘7’, etc.

The data represented within the double quotes are called a string constant for example, “Delhi”,
“programming”, etc. The total number of characters in a C programming language is 256.

16 | Problem solving using computers

2. Numeric Constant: Numerical constants can be used to represent value-type data. The two
types of numerical constants are integer and float.

Representing a numeric value without any fractional part is called an integer. For example, 13, -
13, 28, 54, -1248, and the representation of a numeric value with a fractional part is called float.
For example 12.45, -34.12, 1.723.

3. Data Types: In the C programming language, data types assign memory to the variables. Every
data type has its size in the form of the amount of memory. Based on the data types, specific
amounts of memory and operations are assigned to the variables. Here are some basic data types:

char:

int:

float:

void:

It is used to store one character. In most compilers, the
memory requirement for char is one byte.
It is used to store integer types of data.

It is used to store fractional numbers.

It shows no data types. It means no value. Functions that
return nothing are usually specified using void data type.

Every data type has a different memory requirement. Based on the amount of memory, every data
types have a specific range to store numbers. A list of data types with the amount of memory and
their ranges is given in Table 1.2.

 Table.1.2 Memory required and ranges of various data types

Data Type Format
Specifier

No of Bytes Range

char (signed) %c 1 128 to 127

unsigned char %c 1 0 to 255

int (signed) %d 2 or 4 -32768 to 32767

unsigned int %u 2 or 4 0 to 65535

short int (signed) %d 1 -128 to 127

unsigned short int %u 1 0 to 255

long int (signed) %ld 4
-2147483648 to

2147483647

unsigned long int %lu 4 0 to 4294967295

float %f 4 3.4E-38 to 3.4E+38

double %lf 8 1.7E-308 to 1.7E+308

Computer Programming: Theory and Practicals | 17

4. Variables: In simple terms, a variable is a place with some memory used to store different kinds
of data. Each type of data requires a different size of memory. The type of variable is decided based
on the type of data. The type also determines the range of values that can be kept in that memory
and the range of operations a variable can perform.
 A variable name can be the combination of the alphabets, underscore, and digits, but it must begin
with either underscore or alphabet. C language is case-sensitive; upper and lowercase alphabets
will be distinct.

5. Variable Definition in C: When a variable is defined, the compiler is informed of where and
how much storage should be allocated. The data type followed by names of one or more variables
of the same type makes up a variable definition. The variable declaration has the following syntax:

 type list_of_variables;

 Here, type represents the data type; for example, int, float, char, etc. list_of_variables is the
name of the variables; it can be a single variable or a list of multiple variables separated by the
comma. Some of the valid variable declarations are as follows:

int l, m, n;
float p, q, r, s;
double i, j;
char x;

The line int l, m, n; declares and defines the variables and tells the compiler to create int-type
variables l, m, and n. The compiler creates variables l, m, and n as integer types and stores integer
data.

Similarly, line float p, q, r, s; declares and defines four variables p, q, r, and s of float type. Line
double i, j; declares and defines two variables i and j of double types, and line char x; declares and
defines one variable x of character type.

The variables are initialized using the assignment operator (=) at the time of variable declaration.
The syntax of the variable initialization is as follows:

type name_of_variable = value;

Some of the examples are as follows:

int n=10, m=20; //defining and initializing n and m.
float p=0.5, q=1.141; // defining and initializing p and q.
char var= ‘h’ // The variable var holds the value

‘h’. A single quote (‘’) is used for
a character

18 | Problem solving using computers

Variable Naming Rules: The name of a variable can be a single alphabet (like a and b) or in a
descriptive form (like marks, student_name, salary, etc.).

The variable naming rules are as follows:

 A variable name can be started with the underscore (_) or the alphabet.

 A variable name cannot be started with the digit.

 A variable name can have a combination of alphabets (in upper and lower case), digits, and
underscores.

 A variable name is case sensitive (marks and Marks are both treated as different variables).

 A variable name cannot contain any space.

 There is no limit on the length of the variable name.

 The variable name cannot be the keywords.

Some valid examples of the variable names are x, age, first_name, _amount, marks1, a2b, _xyz.

Invalid examples: 1x, first name, a-b.

Variable Declaration in C: The declaration of a variable assures the compiler that a variable with
the specified type and name exists. The variable declaration allows the compiler to proceed further
with the available information. In C language, all the variables must be declared before their use.
A variable definition only has its meaning at the compilation time; the compiler requires the actual
variable definition when linking the program. An example of variable declaration and definition is
given in Figure 1.11.

Difference b/w Variable Declaration and Definition: When a variable is first introduced or
declared before it is used, referred to as variable declaration. A variable definition refers to
allocating the memory and value for a variable. The variable declaration and definition are
generally made together.

#include<stdio.h>
int main()
{
 char x12 = 'H'; // declaration and definition of variable 'x12'
 float y; // This is also both declaration and definition as 'y'
 // is allocated memory and assigned some garbage value.
 int _z, _xy73, v; // multiple declarations and definitions
 printf("%c", x12); // printing the value of the variable

 return 0;
}

Fig.1.11 Example of declaring and defining the variables

Computer Programming: Theory and Practicals | 19

1.6.5 Pre-define Function and Syntax

These are the set of pre-implemented functions available along with the compiler. They are used to
perform any specific task.

Ex. printf(), scanf(), strcpy(), etc.

Syntax: The basic syntax of C language is every statement should end with a semicolon (;).

1.6.6 Operators

 A special kind of symbol performs a specific task. There are 44 operators available in C
programming language.

Ex. +, -, / %, etc.

1.7 Input/output in C (Practice example)

The program reads user input from the keyboard, calculates the result, and displays the output on
the monitor. The standard library function scanf is utilized to fetch two numbers entered by the user
at the keyboard. The program is shown in Fig.1.12.

1. #include<stdio.h>

2. /* Program execution start from the main function */

3. int main()

4. {

5. int number1; /* variable number1 defined as an integer*/

6. int number2; /* variable number2 defined as an integer*/

7. int result; /* variable result stores addition of first and
 second number */

8. printf(“Enter first number \n”);

9. scanf(“%d”, &number1); /* reads first number inputted by user*/

10. printf(“Enter second number \n”);

11. scanf(“%d”, &number2); /* reads second number inputted by

 user */

12. result= number1 + number2 ; /*assignment of addition of number1

 and number2 to result*/

13. printf(“Addition is %d\n”, result); /* print result*/

14. return 0; /*indicates the successful execution of the

20 | Problem solving using computers

 program */

15. } /*termination of the main function */

Fig.1.12 Input/output in C

The program execution begins from the main function. The left brace { (line 4) marks the beginning
of the main function's scope, which ends at the right brace } (line 15). Lines 5-7 define the variable
definitions. The names number1, number2, and result are the identifier (name) of variables. A
variable is a place in memory that can be used to hold a value for a program. The variables number1,
number2, and result are all of the type int, which holds integer values. The variables must be defined
with the data type followed by its name directly after the right brace that starts the main’s body.
The variable definition (lines 5-7) can be combined into a single statement, as seen below:

int number1, number2, result;

If we place the definition directly after the first printf statement, then it would cause a syntax error.
When the compiler does not recognize a statement, a syntax error occurs. The compiler generates
an error message and the line number to resolve the erroneous statements. These kinds of errors are
generated by violating the language rules. These are also called compile-time errors. Line 8 displays
the message Enter first number on the monitor.

printf(“Enter first number \n”);

The next line 9 uses the scanf statement to take input from the user. The function scanf reads the
input from the input device (keyboard). The scanf function has two parameters, “%d” and
“&number1”.

scanf(“%d”, &number1); /* reads first number inputted by user */

The format specifier, the first parameter outlines the type of data that the user should enter. The
“%d” specifies that the data should be an integer. The second parameter begins with the address
operator, ampersand (&), followed by the variable name i.e., &number1 defines the address in
memory where the number1 (variable) should be stored. The variable number1’s value is then kept
in that memory address by the computer. Lines 10 display a message to enter the second number,
and the cursor is moved to the start of the subsequent line, takes the value for the variable number2
from the user, and stores it at a memory location. Line 12 computes the total number1 and number2
of variables, and an assignment operator assigns the value to the variable result.

result = number1 + number2 ; /*assignment of addition of number1 and

 number2 to result */

Computer Programming: Theory and Practicals | 21

 The + operator and assignment (=) operator are called as binary operator as these takes two
operands to operate. The number1 and number2 are the operands of + operator. The result and
expression value number1 + number2 are the operands of = operator. An assignment operator
assigns the value of the right hand’s operand to the left hand’s operand. Line 13 calls function
printf to display the message written inside it.

 printf(“Addition is %d\n”, result); /* print result */

There are two input parameters for function printf, “Addition is %d\n” and result. The first
parameter is the format control string. It displays some messages and contains the format specifier
%d indicates the printing of an integer. The value to be printed is specified by the second parameter.
Additionally, calculations can be made inside printf statements. The two previous statements may
have been combined into one statement.

 printf(“ Addition is %d \n ”, number1 + number2); /* print sum of

 number1 and number2 */

Line 14 indicates the program has been executed successfully. At line 15, the right brace signifies
that the function main has ended.

 In this unit, we studied the introduction of the C language characteristics and basic structure. In
the remaining book, we will cover each of the expressions and types of instructions with their
syntax, semantics, and usages.

UNIT SUMMARY

Section 1.1 Introduction
 Computing device. Any computing device (computer) does two main tasks: performing

computation and remembering the computation results.
 Problem-solving. Problem-solving is recognizing a problem, creating a (step-by-step

instructions) algorithm to solve it, and then implementing it to create a computer
program.

 Computational Thinking
o Declarative knowledge. Statements that are fact. For example, 2, 4, and 6 are

even numbers.
o Imperative knowledge. A set of instructions gives the information about how

to do certain things.

Section 1.2 Computers

22 | Problem solving using computers

 Types of Computers
o Fixed programmed computer. A computing device performs only a specific

task, i.e., it cannot be programmed for other tasks, e.g., Calculator.
o Stored programmed computer. In a stored program concept, the computer

performs the task stored or given to the computer. All the stored programmed
computer comprises of CPU, Memory, and Input/output devices.

o Computer memory organization. The memory of the computer is split into
very small units that are called bytes. A single letter or small number is stored
in a single byte. Each byte of memory can be identified by a unique address.

Section 1.3 How to communicate with computers
We have to give a task (instructions) in a language the computer understands. The computer

understands binary language 0s and 1s.
 Machine language. The computer architecture comprises several billion transistors

turned on by the electronic signals it receives (0 represents OFF (low voltage) and 1 ON
(high voltage)). Therefore, computers understand the program written in a binary
language (series of 0s and 1s).

 Assembly language. Assembly language employs mnemonics, or short words, in place
of binary numbers to represent instructions. For instance, the mnemonics add, mul, mov
etc. The assembler converts the assembly language to machine language.

 Natural language. Human understandable languages such as English, Hindi, Tamil,
and so on. However, these are ambiguous in nature and cannot be used as a high-level
programming language.

Section 1.4 Programming languages

 Programming languages. These are high-level programming language is any
programming language that enables the development of a program in a much more
user-friendly programming context and is generally independent of the computer's
hardware architecture. Moreover, unambiguous in nature.

 Aspects of programming language
o Syntax. Syntax determines whether combinations of symbols and characters

are well-formed or not in any language. Compiler indicates the syntax errors
(if any).

o Statics Semantic. The static semantics are responsible for checking whether
a string is valid based on the syntactically or not.

o Semantic. The semantics of a language associates a meaning with
syntactically valid symbols without syntax errors. A semantic error produces
undesirable output. It is the programmers’ responsibility to check the
semantic error in the program.

 Types of instructions
o Type declaration Instruction. This is used to declare required variables in

the program (C language).

Computer Programming: Theory and Practicals | 23

o Arithmetic Instruction. These instructions are used to perform arithmetic
operations in C programming.

o Control Instruction. These types of instruction are used to control the flow
and execution sequence of the statements in the c program.

Section 1.5 Introduction to C programming language
Developed by Dennis Ritchi in 1972 as a system programming language to write operating
systems.

 Flow of C program. Filename.cpreprocessorcompilerobject
code(filename.obj) linkerfilename.exeloaderoutput

 Compiler. It checks the errors in the program (if any) and translate from high level
to low level language.

 Linker. It links all the necessary functions defined in included libraries.
 Loader. Load the program into computer memory for execution.
 Compilers for C. Acorn C, Clang, MSVC, Open64, TCC, gcc, and MinGW etc.
 Integrated development environments (IDEs). Visual Studio, Eclipse, Dev C++,

Xcode, Code::Blocks, Turbo C, CodeLite, NetBeans etc.

Section 1.6. Basic components of C language
 Keywords. Words having specific meanings are referred to as reserved words or

keywords.
 Identifiers. The identifier is the name or identity used to recognize the variables,

functions or other components of a program. It cannot be from the list of keywords.
 Constant: Alphanumeric constants (e.g., ‘A’, ‘x’, “Hello” etc.) Numeric constants (1,

2, 8, 567, etc.)
 Data types. char, int, float, void
 Variables. A variable is a placeholder with some memory used to store different kinds

of data (e.g., int a =10, here a is an integer type variable having value 10)

EXERCISES
 Fill in the blanks

For the following statements, fill in the blanks:

1. In this unit, we discussed three types of languages: ________, _________and
_____________.

2. ____________translates high-level language into machine language.

3. _______________are generally used to write a program.

4. In C language, to read data from keyboard ______________function is used.

5. The header file __________ is included in the program for printf, scanf functions.

24 | Problem solving using computers

Answers: 1. machine languages, assembly languages and high-level languages. 2. Compiler

 3. Editors/IDEs 4. Printf 5. stdio.h

Multiple Choice Questions
 1. Among the options below, which one is not a programming language?

 a. c# b. Java c. C d. Window

2. What is the function of a compiler?

a. Converting pseudo code to a computer program

b. Converting high-level language to machine-level language

c. Converting high-level program to binary digits

d. Converting integer to assembly language

3. The main components of CPU are:

 a. Registers, ALU, Monitor b. Control Unit, ALU, Hard Disk
 c. Control Unit, ALU d. Main Memory, ALU, Control Unit

4. Which would be the output of the following code snippet:
#include<stdio.h>
 int main()
 {
 int main = 110;
 printf("%d", main);
 return 0;
 }

a. Generates a syntax error b. Generates a compile time error

c. 110 d. None of the above

5. C is a general-purpose and ___________ programming language.

a. high-level b. low-level

c. assembly d. machine

6. Which of the following error comes under the syntax error?

 a. int result= 10/ ‘x’; b. int result= 10/2.3;

 c. int result= 10+20; d. int result= 10 20;

Answers of Multiple Choice Questions

Computer Programming: Theory and Practicals | 25

Short and Long Answer Type Questions

1. Match the following table.

Data Type Format Specifier

A. char 1. %lf

B. float 2. %Lf

C. double 3. %c

D. long int 4. %hd

E. unsigned int 5. %f

F. int 6. %lu

G. short int 7. %u

H. signed char 8. %c

I. long double 9. %li

J. unsigned long int 10. %d

2. Find the invalid variable and explain the errors.

NEWCODE _NEW new-salary #MEDIAN

circle.822 fog in 2022 time over FLOAT

wORld qu#e$ue. your’sloss area # 4

2022_YMonth 1old +Press new_*

3. What is a header file? Explain the use of header files in C programs.

4. Can a C program be compiled without a main()? If No, explain why.
5. What is printf() & scanf() in C Program? Explain with an example.

6. Explain the difference between the Interpreter & Compiler. Also, draw the basic process of

 compilation of a C program.

7. Read statements a) and b) whether they are true or false. Explain your justification.
a) Machine languages are not typically machine-dependent.
b) C is typically assumed to be machine-independent.

8. Print "Welcome to the Learning World" in the following ways:
a) Welcome to the Learning World
b) Welcome

 to

 the

Learning

26 | Problem solving using computers

World

9. Write a correct statement for each of the following; if there is no error, write “NO Change”.
(a.) int main{}

(b.) print("Hello Learner");

(c.) int variable

(d.) int x=10 y=20;

(e.) print("Hello!")
(f.) #include(stdio.h)
(g.) char chr = “x”;
(h.) Printf("character = %c" chr);
(i.) scan("%d", &xyz”);
(j.) #include(stdio)

10. Write an output for the following printf statements; if there is no output, write “None”. Assume
a = 3 and b = 4.

(a.) ("%d", a);
(b.) ("%d", a + a + a);
(c.) ("a=");
(d.) ("b=%d", a*a);
(e.) ("%d = %d", a + b, b + a);
(f.) /*("a + b + a = %d", b + a + b); */
(g.) ("\n\n\n\n");

PRACTICAL
1. Write a program to accept two integers from the user after compiling the code, calculate the sum

of these integers, and print the outcome using printf.

2. Write a program to accept one integer, one character, and one float by a user at the keyboard,
print these values, using printf.

3. Write a program that prints “Computer Programming: Theory and Practicals” in two lines such
that “Computer Programming:” in first line and Theory and Practicals in the second line.

KNOW MORE
How to run a C program using GNU Compiler Collection (gcc)
As we know, C is a high-level language which means, you need to translate the source code written
in a human-understandable format into a machine-understandable format. Therefore, a compiler is

Computer Programming: Theory and Practicals | 27

needed to compile the program. GNU Compiler Collection (gcc) is one of the most popular
compilers available for compiling C programs. It is available for free.
Here are the steps of compiling and running a c program using gcc.

1. Write a C program and save it with .c extension. For example, fProgram.c
2. Now, compile this program using gcc command on the terminal/command prompt. For

example, gcc fProgram.c -o fProgram
3. Run the program by command ./fProgram on Linux and Mac machines and fPrograms

on windows machines.

There was a time before computers, even though they are now an integral part of human life.
Knowing computers' history and advancement can help us understand the complexity and creativity
in computer manufacturing. Computers can be categorized in multiple ways depending on their
generation, size, working, and use. There exist four generations of computers. The first-generation
computers from 1940-1958 utilized vacuum tubes to design circuitry and magnetic drums for
memory. These computers took the entire room to build and were expensive to operate (because of
the size and maintenance). Next, the second-generation computers (1959-1964) were based on
transistors, developed at AT&T’s Bell Labs. A single transistor had replaced around 40 vacuum
tubes. They were small, fast, and reliable compared to first-generation computers. During this time,
high-level languages like FORTRAN and COBO were developed. The program instructions were
stored in memory, transitioning from magnetic drum to magnetic core technology. The initial
computers of this generation were designed for the atomic industry.

Further, the third generation of computers begins from 1965 to 1970. The third
generation of computers was developed using the Integrated Circuits (IC) as its
foundation. The same transistor but smaller, mounted on silicon chips were used,
which significantly boost the speed and effectiveness of computers. The fourth

28 | Problem solving using computers

generation started in 1971. These are microprocessor-based computers. Our
immediate environment is filled with fourth-generation computers. This
generation used semiconductor memory such as ROM, RAM, etc. Computers of
significantly smaller size and more capacity were available in this generation. The
fifth generation of computers could be Artificial Intelligence (AI). It makes
computers behave like human beings. To read in detail, please refer to QR code.

Read more
about computer

and history

REFERENCES AND SUGGESTED READINGS
1. Lundqvist, I. Kristina. "Introduction to Computers and Programming." (2004).

2. B. L. Juneja and Anita Seth, Programming for Problem Solving (2019)

3. https://nptel.ac.in/courses/106105171

4. https://nptel.ac.in/courses/106104074

5. https://ocw.mit.edu/courses/6-00-introduction-to-computer-science-and-programming-fall-
2008/

Computer Programming: Theory and Practicals | 29

d

UNIT SPECIFICS

Through this unit we have discussed the following aspects:
● Use of different operators in C language;
● Classification of operators based on number of operands
● Classification based on role of operator
● To learn precedence and associativity of operators;
● Practice problems on various operators;
● Input and Output in C language;
● Formatted input and output in C language;
● Input and output through files;

All these topics are discussed with detailed examples. Further, if needed, there is reference material
attached to each topic. To maintain the curiosity and interest of the readers, this unit also provides
video links via QR code for the explanation of each topic. At the end of the unit, various types of
exercises are provided that include Multiple Choice Questions (MCQs), output-based questions,
practical exercises, etc. Moreover, a list of references and suggested readings are given at the end
of the unit.

RATIONALE

In this unit, we extend the introduction to C programming started in the first unit. It begins with
the standard input and output in C programming. The syntax and semantics of basic input and
output utility functions are discussed. Next, we discuss various types of operators available in C
language, which are fundamental elements of solving a computational problem. Next, it gives a
brief introduction of input and output through files. Though, this part can be covered later after
reading the remaining units. It is added here for the sake of completeness. Through this unit, we
answer the two fundamental questions: 1) how to take input and show the output using C
programming language? 2) How to write expressions that perform some computations involving
different types of operators?

2 Operators and Input-
Output in C

30 | Operators and Input‐Output in C

PRE-REQUISITES

Basic Mathematics

UNIT OUTCOMES

List of outcomes of this unit is as follows:
U2-O1: Describe basic C operators
U2-O2: Describe associativity and precedence of various operators
U2-O3: Explain formatted input and output in C programming language
U2-O4: Apply different input and output methods in problem solving
U2-O5: Apply different operators to solve complex problems

Unit-1 Outcomes
EXPECTED MAPPING WITH COURSE OUTCOMES

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6

U2-O1 3 3 3 - 3 1

U2-O2 1 1 2 2 1 -

U2-O3 2 1 3 1 2 1

U2-O4 - - 3 1 2 2

U2-O5 3 3 3 - 3 1

Computer Programming: Theory and Practicals | 31

2.1 Expressions and Operators in C

In the first unit, we studied different types of instructions involved in a programming language:
Type declaration, Arithmetic instructions, and Control instructions. Various operations may be
involved to solve a complex problem. These operations are carried out using various operators.
You must have used these operators when studying mathematics, such as +, -, =, and so on. In
programming languages, we can use these operators on different operands. Together with the
operands, they can be called expressions. A simple expression consists of a single constant value,
the identifier, or a literal string, or a function. Such kinds of simple or multiple expression enclosed
in parentheses is called primary expression.

Example. Suppose a programmer wants to develop a program to generate the results of the
students of any specific class. For that, he has to calculate total marks obtained, percentages,
etc., which will require the arithmetic operator, and storing the results, requires the assignment
operator. To find out the grades, programmers will need relational operators. To combine more
than one relational operator, he will require logical operators. Thus, we can say that different
types of operators are required to solve real-life problems. To solve the different types of
problems C programming language supports different types of operators, which we will discuss
in this section.

Operators perform specific types of operations between variables, constants, etc. In C language,
operators are broadly categorized as:

1. Binary Operators
2. Unary Operators
3. Ternary or Conditional Operators

2.2 Binary Operators
The operators who perform between two operands or values are known as binary operators. In that,
each operator required exactly two variables, values, etc., which are known as operands.

Syntax of binary operator:

First_Operand Operator Second_Operand

Types of binary operators:

A. Arithmetic operators
B. Assignment operators
C. Relational operators
D. Logical operators
E. Bitwise operators

32 | Operators and Input‐Output in C

A. Arithmetic Operators. Arithmetic operations are the basic calculation operation like addition,
subtraction, multiplication, division, and modulus.
 Addition (+): This operation performs the addition of two numbers.
 Subtraction (-): This operation performs the difference between two numbers.
 Multiplication (*): This operation performs the product of two numbers.
 Division (/): This operation performs the division of its operands. In that, the first left

operand is divided by the right operand.
 Modulo Operator (%): It has two operands, left and right. The left operand divides by the

right operand. After the division, the remaining number which cannot be further divided
will be the result. The modulo operator can be used to find the remainder of the only integer
numbers. It means both operands should be in integer form.

Note: Various special symbols in C are not used in basic mathematics. The percent (%) sign
depicts the modulo operator and the asterisk (*) depicts the multiplication operator. In C, if we
want to multiply two operands p and q, then it should be written as p*q; that is, it requires a
multiplication operator (*), whereas in algebra, multiplication could have been done by simply
writing pq but, the C language interprets pq as an identifier. Therefore, programming
languages explicitly require operators to perform2 operations.

B. Assignment Operators: These operators assign value to the variables or the identifiers. When
this operator executes, it assigns the right operand’s value to the left operand’s one. The right
operand must be either a constant or a variable, but the left operand must be a variable only (it
should never be a constant). After the execution of this operator, the left operand’s value is
overwritten by the right operand’s value which could be either a constant value or a value of another
variable. The assignment operators are shown in Table 2.1.

Note: The operand addressable (which has a memory address) is known as an lvalue. For
example, variables. The operand that cannot be addressable or requires a memory location to
store is known as an rvalue. The lvalue can also be used as an rvalue but not vice versa. The
assignment operator always expects lvalue as a left operand.

For example:
var1=5; // It is the right expression
while
5=var1; // It is wrong because 5 has no identifiable memory address, so it can’t be an lvalue

and it generates an error “lvalue required”.

Computer Programming: Theory and Practicals | 33

Table 2.1 Assignment operators in C language

Symbol Meaning Examples

= Assignment var = 19; It means value assigned to the var.

+= Summation and assignment var += var1; It means var = var + var1

-= Difference and assignment var -= var1; It means var = var - var1

*= Product and assignment var *= var1; It means var = var * var1

/= Division and assignment var /= var1; It means var = var / var1

%= Reminder and assignment var %= var1; It means var = var % var1

Note: In the C language, the operator ‘=’ is used to assign the value, and ‘==’ is used to
compare two values, while in basic mathematics, ‘=’ is used for both purposes (assignment and
compare).

Figure 2.1 shows the demonstration of arithmetic and assignment operators. Here in, line 7 read
two integer numbers from the user. Line 8, 10, 12, 14, and 16 perform the addition, subtraction,
multiplication, division, and modulo operation, respectively; the assignment operator stores the
results in the add_res, sub_res, mul_res, div_res, and mod_res variables, respectively.
Line 9, 11, 13, 15, and 17 display the performed operation's results.

1. #include<stdio.h>
2. int main()
3. {
4. int var1, var2; //variables to be read from the user
5. int add_res, sub_res, mul_res, div_res, mod_res;

 // variables used to store the results

6. printf("Enter two numbers to perform arithmetic operations: ");
7. scanf("%d %d",&var1, &var2); //read two integer numbers
8. add_res = var1 + var2; // Addition operation
9. printf("The addition of %d and %d is: %d \n",var1,var2,

 add_res);

10. sub_res = var1 - var2; // Subtraction operation
11. printf("The subtraction of %d and %d is: %d \n",var1,var2,

 sub_res);

12. mul_res = var1 * var2; // Multiplication operation

34 | Operators and Input‐Output in C

13. printf("The multiplication of %d and %d is: %d \n",var1,var2,
 mul_res);

14. div_res = var1 / var2; // Division operation
15. printf("%d divided %d is: %d \n",var1,var2,div_res);

16. mod_res = var1 % var2; // Modulo operation
17. printf("The mod of %d and %d is: %d \n",var1,var2,mod_res);

18. return 0;
19. }

Fig 2.1 Demonstration of arithmetic and assignment operators

Output:

Enter two numbers to perform arithmetic operations: 74 9
The addition of 74 and 9 is: 83
The subtraction of 74 and 9 is: 65
The multiplication of 74 and 9 is: 666
74 divided 9 is: 8
The mod of 74 and 9 is: 2

*Note: It is assumed that the user enters 74 and 9 as input.

Note: The arithmetic (except modulo) operator behavior depends on the types of the operand. If
both operands are integers, then the results will be an integer. If one of the operands is float type
(real number), then the output will be a float type.
Example:
var= 33/2; //Here divisor and dividend both are integers so the output will be 16 instead of
 16.5.
var= 33.0/2; // Here dividend is the float type (one of the operands is a float type,
 then the output will be a float type), so here output will be 16.5.

C. Relational Operator: These operators show the relation among the two operands. They are also
used for decision-making tasks. The relational operators check the condition; if it is true, it returns
1, otherwise returns 0. Table 2.2 contains the different types of relational operators. The
demonstration of the relational operators is shown in Fig 2.2.

Computer Programming: Theory and Practicals | 35

Table 2.2: Different types of relational operators

Operator Meaning

Less-than (<) and
Greater-than (>)
operators:

The operator ‘>’ checks if the left operand’s value is greater than
right operand’s one and returns 1, otherwise returns 0.

Less-than or equal to
(<=) and Greater-than
or equal to (>=)

 Similarly, ‘<’ checks if the left operand’s value is smaller than
right operand’s one and returns 1, otherwise returns 0.

Equal to (==) and Not
equal to (!=) operator:

The operator ‘==’ returns 1 when both operands (left and right)
are the same (equal to). If not, then it returns 0. The operator ‘!=’
returns 1 when both operands (left and right) are different (not
equal to). If not, then it returns 0.

1. #include<stdio.h>
2. int main()
3. {
4. int var1, var2;
5. var1=23;
6. var2=32;
7. printf("Enter two numbers to check which relationship exists

 between them:");
8. scanf("%d%d", &var1,&var2);

9. printf("%d is Greater-than %d: the result is %d\n", var1, var2,

 var1>var2); // Greater-than operator

10. printf("%d is Less-than %d: the result is %d\n",var1, var2,
 var1<var2); // Less-than operator

11. printf("%d is Greater than or equal to %d: the result is %d\n",

 var1,var2,var1>=var2); //Greater-than or equal to operator

12. printf("%d is Less than or equal to %d: the result is %d\n",
 var1, var2, var2<=var1); // Less than or equal to operator

13. printf("%d equals to %d: the result is %d\n", var1, var2,
 var1==var2); // Equal to operator

36 | Operators and Input‐Output in C

14. printf("%d is not equal to %d: the result is %d\n", var1, var2,
 var2!=var1); // Not equal to operator

15. return 0;
16. }

Fig 2.2 Demonstration of relational operators

Output:

Enter two numbers to check which relationship exists between them:23
45
23 is Greater-than 45: the result is 0
23 is Less-than 45: the result is 1
23 is Greater than or equal to 45: the result is 0
23 is Less than or equal to 45: the result is 0
23 equals to 45: the result is 0
23 is not equal to 45: the result is 1

*Note: It is assumed that the user enters 23 and 45 as an input

D. Logical Operator: Generally, logical operators are used with relational operators. Logical
operators are used for combining two statements. Logical operators also return the results as true
(1) or false (0).
Basic different logical operators are:
AND operator (&&): AND operator is used to combine two statements (operands). If both statements
are true, then AND operator returns true else, it returns false. Fig 2.3 shows the demonstration of the
logical AND operator.

1. #include<stdio.h>
2. int main()
3. {
4. int var1, var2;
5. var1= 20<30 && 40<50;
6. var2= 20<30 && 40>50;
7. printf("Result of the first expression is %d\n",var1);
8. printf("Result of the second expression is %d\n",var2);
9. return 0;
10. }

Fig 2.3 Demonstration of the logical AND operator
Output:

Result of the first expression is 1
Result of the second expression is 0

Computer Programming: Theory and Practicals | 37

Note: In the AND operator, evaluation of the statements starts from left to right. If the first statement
is false, then the AND operator returns false without executing the second statement. The second
statement will execute when the first statement is true. As shown in Fig. 2.4.

1. #include<stdio.h>
1. int main()
2. {
3. int var1, var2;
4. var1=10;
5. var2= 20>30 && ++var1; // ++var1 means var1=var1+1
6. printf("Results of the expression is %d\n",var2);
7. printf("Updated value of var1 is %d\n",var1);
8. return 0;
9. }

Fig 2.4 Demonstration of the logical AND operator

In the above code, in line 5 first statement, 20>30, is false, so AND operator returns false without
executing the second statement. Because of this, the value of var1 will remain the same (10). The
output is given below.
Output:

Results of the expression is 0
Updated value of var1 is 10

OR operator (||): The OR operator is used to combine two statements (operands). If any one of
the statements is true, then the OR operator returns true else, it returns false. Fig 2.5 shows the
demonstration of the logical OR operator.

1. #include<stdio.h>
2. int main()
3. {
4. int var1, var2;
5. var1= 20>30 || 40>50;
6. var2= 20<30 || 40>50;
7. printf("value of var1 is %d\n",var1);
8. printf("value of var2 is %d\n",var2);
9. return 0;
10. }

Fig 2.5 Demonstration of the logical OR operator

Output:

value of var1 is 0
value of var2 is 1

38 | Operators and Input‐Output in C

Note: In the OR operator, evaluation of the statements starts from left to right. If the first statement
is true, then the OR operator returns true without executing the second statement. The second
statement will execute when the first statement is false. As shown in Fig. 2.6.

1. #include<stdio.h>
2. int main()
3. {
4. int var1, var2;
5. var1=10;
6. var2= 20<30 || ++var1; // ++var1 means var1=var1+1
7. printf("Results of the expression is %d\n",var2);
8. printf("Updated value of var1 is %d\n",var1);
9. return 0;
10. }

Fig 2.6 Demonstration of the logical OR operator

In the above code, at line number 6 first statement, 20<30, is true, so the OR operator returns true
without executing the second statement. Because of this, the value of var1 will remain the same
(10).
Output:

Results of the expression is 1
Updated value of var1 is 10

NOT operator (!): Logical NOT (!) is an unary operator. It applied to a single statement. The
logical not operator complements the results of the statement. It means if the statement is true, then
after the not operator, it returns the false. Fig 2.7 shows the demonstration of the logical NOT
operator.

1. #include<stdio.h>
2. int main()
3. {
4. int var1, var2;
5. var1= !(20>30); // 20>30 is false but due to not operator return

 true
6. var2= !(20<30); // 20<30 is true but due to not operator return

 false
7. printf("Result of !(20>30) is %d\n",var1);
8. printf("Result of !(20<30) is %d\n",var2);
9. return 0;
10. }

Fig 2.7 Demonstration of the logical NOT operator

Computer Programming: Theory and Practicals | 39

Output:

Result of !(20>30) is 1
Result of !(20<30) is 0

E. Bitwise Operator. The bitwise operators deal with the bit. It means that given operands are
converted into the binary form and then manipulated bits according to the operations.

Basic bitwise operators are shown in Table 2.3. The demonstration of the bitwise operators is shown
in Fig 2.8.

Table 2.3: Basic bitwise operators

Operator Meaning

Bitwise OR
operator (|)

The operator OR (|) returns 0 if both the bits are 0, otherwise, it returns
1.

Bitwise AND operator (&) The operator AND (&) returns 1 if both the bits are 1, otherwise, it returns
0.

Bitwise XOR operator (^) The operator XOR (^) returns 0 if both the bits are the same (either 0 or 1),
otherwise, it returns 1.

Bitwise left shift operator
(<<)

The left shift (<<) operator left shifts the bits of the left operand; the
right operand tells the total number of places to be shifted.

Bitwise right shift
operator (>>)

The right shift (>>) operator right shifts the bits of the left operand;
the right operand tells the total number of places to be shifted.

Bitwise Complement
operator (~)

This is the unary operator; this operator is performed on the single operand.
The operator ‘~’ flips each bit of the operand. It means 1 becomes 0 and 0
becomes 1.

For example, suppose var1 and var2 holds the binary number 00111 and 01001 respectively
then

var1 | var2 0 1 1 1 1
var1 & var2 0 0 1 0 1
var1 ^ var2 0 1 0 1 0
var1<<2 1 1 1 0 0
var1>>2 1 1 0 0 1
~var1 1 1 0 0 0

40 | Operators and Input‐Output in C

1. #include <stdio.h>
2. int main()
3. {
4. int var1,var2,var3;
5. printf("Enter two numbers to perform bitwise operations ");
6. scanf("%d%d",&var1,&var2);
7. var3= var1 | var2; // Bitwise OR operation
8. printf("The result of the bitwise OR operation between %d and %d

 is: %d \n",var1,var2,var3);
9. var3= var1 & var2; // Bitwise AND operation
10. printf("The result of the bitwise AND operation between %d and
 %d is: %d \n",var1,var2,var3);
11. var3= var1 ^ var2; // Bitwise XOR operation
12. printf("The result of the bitwise XOR operation between %d and %d

 is: %d \n",var1,var2,var3);
13. var3= var1 << 2; // Bitwise left shift operation
14. printf("The result of 2 left shifts operation on %d is: %d \n",

 var1,var3);
15. var3= var1 >> 2; // Bitwise right shift operation
16. printf("The result of 2 right shifts operation on %d is: %d \n",

 var1,var3);
17. var3= ~var1; // Bitwise complement operation
18. printf("The bitwise complement of %d number is: %d\n",var1,var3);
19. return 0;
20. }

Fig 2.8 Demonstration of the bitwise operators

In the above code, line 6 receives two integer numbers from the user, which are stored in var1 and
var2 variables; suppose they are 4 and 5. Line numbers 7, 9, 11, 13, 15, and 17 perform the bitwise
OR, AND, XOR, left shift, right shift, and complement, respectively. Before doing the
bitwise operation compiler convert the operand into the binary number (the required number of bits
vary compiler to compiler, only for the understanding here we take 8 bits), which means 4 becomes
00000100 and 5 becomes 00000101. Now each bit performed bitwise operation separately; for
example, in bitwise OR operation (00000100 | 00000101), 0|1 generates 1, 0|0 generates 0,
1|1 generates 1. The final results will be 00000101, which is the 5. Similarly, all other operations
will be performed. The output of the above code is shown below.
Output:

Enter two numbers to perform bitwise operations 4 5
The result of the bitwise OR operation between 4 and 5 is: 5
The result of the bitwise AND operation between 4 and 5 is: 4
The result of the bitwise XOR operation between 4 and 5 is: 1
The result of 2 left shifts operation on 4 is: 16
The result of 2 right shifts operation on 4 is: 1
The bitwise complement of 4 number is: -5

Computer Programming: Theory and Practicals | 41

*Note: It is assumed that the user enters 4 and 5 as an input

2.3 Unary Operator

The unary operator requires only one operand or the arguments. Some basic unary operators are as
given below.
 Unary minus (-): It changes the sign of any operands. It means negative becomes positive or

positive becomes negative.
 Example:

var1= 19;
var2= -var1 // it means var2 = -19

 Unary plus (+): It is a unary plus operator. It represents the positive sign of the number.
 Example:

var1= +19; // it means positive 19 assigned to the var1
 sizeof() operator: This operator returns the size of the operand in bytes.

Example:
sizeof(var1); // Here sizeof() operator returns how many bytes are allotted to the

var1.
 Addressof operator (&): The & operator is also known as the ampersand operator. It returns

the address of memory allotted to the variable.
 Example:

&var1; // It returns the memory address of the var1.

Fig 2.9 shows the demonstration of the unary operators.

1. #include <stdio.h>
2. int main()
3. {
4. int var1,var2;
5. printf("Enter a number to perform unary operations ");
6. scanf("%d",&var1);
7. var2= -var1; // Unary minus operation
8. printf("The number %d becomes %d after the unary minus

operation\n",var1,var2);
9. var2= +var1; // Unary plus operation
10. printf("The number %d becomes %d after the unary plus

operation\n",var1,var2);
11. // addressof operation
12. printf("The address of %d is %d \n",var1,&var1);

13. var2= sizeof(var1); // sizeof operation
14. printf("The number of bytes required to store %d is

%d\n",var1,var2);

42 | Operators and Input‐Output in C

15. return 0;
16. }

Fig 2.9 Demonstration of the unary operators

The above code demonstrates the -, +, &, and sizeof unary operations. The output of the above
code is shown below.

Output:

Enter a number to perform unary operations 12
The number 12 becomes -12 after the unary minus operation
The number 12 becomes 12 after the unary plus operation
The address of 12 is 1070816304
The number of bytes required to store 12 is 4

*Note: It is assumed that the user enters 12 as an input

 Decrement operator (--): This operator decrements the value of the variable by 1. Decrement

operator can be pre or post-decrement.

 Post-decrement operator first uses the value of the variable and then decrements the value of
the variable by 1.

Example:
var1=19;
var2= var1++; // it means first the value of var1 assigned to the var2 then decrement

the value of var1 by 1. After the following statement, the value of
var1 and var2 will be 18 and 19, respectively.

 Pre-decrement operator first decrement the value by 1, then use the value of the variable.

 Example:
var1=19;
var2= ++var1; // it means first the value of var1 decrement by the 1 and then assign to

the var2. After the following statement, the value of var1 and var2
will be 18 and 18, respectively.

 Increment operator (++): This operator is used to increment a value of the variable by 1.

Increment operator can be pre or post-increment.

 Post-increment operator first uses the value of the variable and then increments the value of

the variable by 1.
 Example:

var1=19;

Computer Programming: Theory and Practicals | 43

var2= var1++; // it means first the value of var1 assigned to the var2 then increment
the value of var1 by 1. After the following statement, the value of
var1 and var2 will be 20 and 19, respectively.

 Pre-increment operator first increments the value by 1 before using it.

 Example:
var1=19;
var2= ++var1; // it means first the value of var1 increment by the 1 and then assign to

the var2. After the following statement, the value of var1 and var2
will be 20 and 20, respectively.

A C program demonstrating the unary increment and decrement operators is shown in Fig 2.10.

1. #include <stdio.h>
2. int main()
3. {
4. int var1,var2;
5. printf("Enter a number to perform pre-increment operation ");
6. scanf("%d",&var1);

7. printf("The entered number is: %d\n",var1);
8. printf("In post-increment operation, the number is printed,

 then incremented. The number is: %d\n", ++var1);
9. printf("The updated number is: %d\n\n",var1);

10. printf("Enter a number to perform post-increment operation ");
11. scanf("%d",&var1);
12. printf("The entered number is: %d\n",var1);
13. printf("In post-increment operation, the number is printed,

 then incremented. The number is: %d\n", var1++);
14. printf("The updated number is: %d\n\n",var1);

15. printf("Enter a number to perform pre-decrement operation ");
16. scanf("%d",&var1);

17. printf("The entered number is: %d\n",var1);
18. printf("In a pre-decrement operation, the number is decremented

 and then printed. The number is: %d\n", --var1);
19. printf("The updated number is: %d\n\n",var1);

20. printf("Enter a number to perform post-decrement operation ");
21. scanf("%d",&var1);
22. printf("The entered number is: %d\n",var1);
23. printf("In post-decrement operation, the number is printed then

 decrement. The number is: %d\n", var1--);

44 | Operators and Input‐Output in C

24. printf("The updated number is: %d\n",var1);

25. return 0;
26. }

Fig 2.10 Demonstration of the increment and decrement unary operators

In the above example, line 8 performs a pre-increment operation which first increases the variable's
value by 1 and then using the printf function displays the value. Line 13 performs a post-
increment operation, which first displays the value of the variable by using the printf function
and then increments it by 1.
The same procedure is followed in performing the decrement operations; however, the decrement
operation decrements the value of the variable by 1. The final output is shown below.

Output:

Enter a number to perform pre-increment operation 5
The entered number is: 5
In post-increment operation, the number is printed, then incremented.
The number is: 6
The updated number is: 6

Enter a number to perform post-increment operation 5
The entered number is: 5
In post-increment operation, the number is printed, then incremented.
The number is: 5
The updated number is: 6

Enter a number to perform pre-decrement operation 5
The entered number is: 5
In a pre-decrement operation, the number is decremented and then
printed. The number is: 4
The updated number is: 4

Enter a number to perform post-decrement operation 5
The entered number is: 5
In post-decrement operation, the number is printed then decrement. The
number is: 5
The updated number is: 4

*Note: It is assumed that the user enters 5 as an input

2.4 Ternary Operator
The operator which requires three operands is known as the ternary operator. The conditional
operator is the example of the ternary operator.

Computer Programming: Theory and Practicals | 45

Conditional operator (?:): The conditional operator is the operator which requires three operands.
The symbol of the conditional operator is ‘?:’. The conditional operator divides into three parts:
left, middle, and right using ‘?’ and ‘:’ symbols. The left operand represents the condition, middle
and right operands represent the true and the false parts. If the expression in the conditional part
returns true, then the middle part will execute, and the right part will skip. If the expression returns
false, then the right operand will execute, and the middle part will skip. The demonstration of the
ternary operator is shown in Fig 2.11.

Syntax of the conditional operator:

conditional_operand ? middle_operand : right_operand

Example:
var1= 23>12 ? 23 :12; //The value of var1 will be 23.
var2= 23<12 ? 23 :12 // The value of var2 will be 12.

1. #include <stdio.h>
2. int main()
3. {
4. int var1, var2, var3;
5. var1= 23<19?23:19; // conditional part is false, so the expression

 returns the right operand (19)
6. var2= 45>29?45:29; // conditional part is true, so the expression

 returns the left operand (45)
7. printf("var1= %d\n",var1);
8. printf("var2= %d\n",var2);

9. return 0;
10. }

Fig 2.11 Demonstration of the ternary operator

Output:

var1= 19
var2= 45

2.5. Implicit and explicit-type conversions
Converting one data type into another is known as type conversion. Type conversion can be done
in two ways:
1. Implicit type conversion
2. Explicit type conversion

46 | Operators and Input‐Output in C

2.5.1. Implicit type conversion
This is done automatically by the compiler. When the compiler receives two different types of
operands then it converts the lower data type into the higher data type. Figure 2.12 shows the list
of data types from lower to higher with respect to memory size. The demonstration of the implicit
type conversion is shown in Fig 2.13.

Fig 2.12. Data types from top to bottom in increasing order of memory size.

1. #include<stdio.h>
2. int main()
3. {
4. int var1 = 19; // integer var1
5. char var2 = 'A'; // character var2

6. // var2 implicitly converted to int. ASCII value of 'A' is 65
7. var1 = var1 + var2;

8. // var1 is implicitly converted to float
9. float var3 = var1 + 1.0;

10. printf("var1 = %d, var3 = %f", var1, var3);
11. return 0;
12. }

Fig 2.13 Demonstration of the implicit type conversion
In the above example, the implicit type conversion has done in lines 7 and 9. Following is the output
of the code:

Output:

Computer Programming: Theory and Practicals | 47

var1 = 84, var3 = 85.000000

2.5.2. Explicit type conversion
In this process, the data type is changed by the user. In this user can typecast the result into the
particular data type. This process is also known as type casting. The syntax is as given below.

(type) expression

Here expression returns the result and type converts it into the specific data type. Fig 2.14 shows
the demonstration of the explicit type conversion.

1. #include<stdio.h>
2. int main()
3. {
4. double var1 = 1.7;

 // Explicit conversion from double to int
5. int add = (int)var1 + 3;

6. printf("addition = %d", add);
7. return 0;
8. }

Fig 2.14 Demonstration of the explicit type conversion

In line 5, the result of the expression comes in double, which will explicitly convert into the int.
The output of the above code is:

Output:

addition = 4

Operators in C have a unique meaning to make the programming language unambiguous.
Moreover, there are some rules and syntax to use these operators. Now, we will discuss the
precedence and associativity of these operators.

2.6 Precedence and associativity of C operators
When an expression contains multiple operators, the execution of operators is decided based on
their precedence. The precedence of operators tells whether the given operators are executed first
or later. The associativity of the operator shows the direction (left to right or right to left) of the
execution of the operation. Associativity will check when two or more operators with the same

48 | Operators and Input‐Output in C

precedence participate in the same expression. Figure 2.15 shows the precedence and the
associativity of the C operators.

Fig 2.15: Precedence and the associativity of the operators

The execution of the expression (which contains several operations) depends on the priority and
associativity of the operators. This section includes examples to understand the hierarchy of the
operators.

Example: Evaluate the following expression and determine the value of variable x.
 x=2+3*4-7/2;
Solution: Before executing the expression, the compiler finds the operator's execution sequence
based on the operators' priority and associativity; in this example, the multiplication operator (*)

Question 2.1 How hierarchy of operators work?

Computer Programming: Theory and Practicals | 49

has the highest priority over the others, so it will evaluate first. After it, the division, addition, and
subtraction operator will evaluate. As we already discussed, the operator behavior depends on the
operand types, so at step 2, 7/2 will return 3 instead of 3.5. After the complete execution of the
expression, the result will be 11; it will be stored in variable x, shown in Fig 2.16.

Fig 2.16 Evaluation of x=2+3*4-7/2

Example: Evaluate the following expression and determine the value of variable x.
 x=2+3*4-7/2<6<12;
Solution: The priority of the less than operator (<) is lower than the arithmetic operators, so the
evaluation of the given expression will be the same as the above example till step 5. At step 5, the
relational operator (less than) will execute, and 11<6 is the false statement, which will return 0. At
step 6, 0<12 will be a true statement that returns 1. So, the final result will be 1, which will be
stored in variable x, shown in Fig 2.17.

Fig 2.17 Evaluation of x=2+3*4-7/2<6<12

50 | Operators and Input‐Output in C

Example: Evaluate the following expression and determine the value of variable x.
x=2+3*4-7/2<6<12 && 10<71/6;
Solution: The logical operator divides the expression into two parts: left and right. Evaluation is
done from left to right. This expression is divided using the logical AND operator (&&); In the AND
operator, If the first statement is false, then the AND operator returns false without executing the
second statement. In this example, the result of the left part is 0, so AND operator will return 0
without executing the right part, as shown in Fig 2.18. If the value of the left part is true (non-zero)
then the right part will be evaluated.

Fig 2.18 Evaluation of x=2+3*4-7/2<6<12 && 10<71/6

2.7 Input and Output in C Programming
In the first unit, we had an introduction to problem-solving through computers. We studied the
fundamentals of programming languages and introduction to C programming. In any problem-
solving approach, input and output are key aspects.

Example: Assume one software/application/machine is built to tell you the name of the capital of
a country i.e., you give (input) the name of the country and the machine will tell (output) the capital
name. There could be different possible ways available to give input to the machine. For example,
you might tell the machine via voice command (through microphone) or by typing input in the
machine via the attached keyboard.

Thus, when a programmer writes a program in any programming language, then the programmer
must specify how it will take the input and how it will show or give the output. In Unit I, we
discussed the various input-output devices. In the C programming language, we have the facility

Computer Programming: Theory and Practicals | 51

(through built-in functions) to take input via the input device and show the output through the
output devices. In computers, the standard keyboard is considered a standard input device, and the
monitor (screen) is considered a standard output device.
In unit-I, we introduced two basic utility functions printf and scanf to take input data from the
standard input device (keyboard) and show output data through the standard output device
(Monitor). We will discuss the input and output in C programming in detail.

Input and Output Stream. In computers, every input and output operation is carried out using a
sequence of bytes called streams. Bytes are transferred from an input device (such as a keyboard,
mouse, or scanner) to the main memory during input operations. In contrast, bytes are transferred
from the main memory to a device during output operations. Three streams are automatically linked
to the program whenever the execution of a program begins starts. The input and output stream has
associated with the keyboard and screen. The error stream, a third stream, is associated with the
screen.

2.7.1 Output with printf function

As we have studied in Unit 1, each printf statement includes a format control string describing
a format in which output will be printed. The function printf has the following syntax.

printf(format_control_string, other parameters);

The format control string comprises literal characters, flags, field widths, and conversion specifiers,
these form conversion specifications jointly with the percent sign (%). The printf does the
following formatting:

1. Using exponential representation for floating-point numbers.
2. Placing literal characters in output at specific positions.
3. Left and right justification of outputs.
4. Displaying data with precisions and fixed size filed widths.
5. Displaying unsigned integers in hexadecimal and octal formats.
6. Rounding off a floating point numbers into a fixed number of decimal places.
7. Arranging a column of values, so the decimal points are stacked on top of the other.

format_control_string describes a format in which output will be printed, and the
additional_parameters are optional parameters corresponding to conversion specification in
format_control_string. The conversion specification consist of a percent sign at the starting
followed by a conversion specifier at the end. One format control string can contain many
conversion specifications.

52 | Operators and Input‐Output in C

2.7.1.1 Printing integers and floating-point numbers
An integer is a number that is written without a fractional part—for example, -54, 9, or 254. There
are many formats to display an integer value shown in Table 2.4. Similarly, a floating-point
number contains a fractional part (decimal point). For eg., 45.12, -567.334, or 0.0. The floating-
point number is represented in fixed point notation using the specifier f whereas in the exponential
form notation using the specifier e (or E) ('exponent'). The lowercase e prints lowercase e and E
prints uppercase E. It is equivalent to mathematics scientific notation. For instance, the number
1320.23 is depicted as

 1.32023 × 103

in scientific notation, whereas

 1.32023E+03

in exponent notation by the computer system. The values printed using the specifiers e,f, and E
displays by default six precision digits followed by a decimal point. The floating-point number is
represented either in exponential or fixed-point notation depending upon the value of magnitude
with no trailing zeros. For example,

1.2023000 is printed as 1.2023 // with no trailing zero.

The values are displayed with E or (e) if their exponent is less than -4 after being converted to
exponential notation or if their exponent is greater than or equal to the six precision digits and in
rest of the cases, the value is printed using the conversion specifier f. The decimal point is always
at least one digit to the left of all the floating point specifiers. The numbers 0.00000456, 456,
4.56, 45.60, and 4560000.0 are displayed as 4.56e-06, 456, 4.56, 45.6, and 4.56+e06
using the specifier ‘g’.

The number 0.00000456 is written in exponential notation since the
exponent (-6) is smaller than -4, and the number 4560000.0 also uses
exponential notation since the exponent (6) is equal to the default
precision (six precision digits).

A lowercase g results in the output of a lowercase e, whereas an uppercase G results in the output
of an uppercase E (same as the distinction between e and E). The number is rounded in the output

Computer Programming: Theory and Practicals | 53

while using the conversion specifiers %e, %E, and %g, but not when using the conversion specifier
%f.

Table 2.4: Integer and Floating-point Conversion Specifiers

Conversion
Specifier

Description

Integer Numbers

d Representing a signed integer.

i Representing a signed integer (The specifier d and i have different
interpretations when used with scanf function)

u Representing an unsigned integer.

o Representing an unsigned octal integer.

X or x Representing an unsigned hexadecimal integer.

l or h
l and h are length modifiers and indicate that long and short integers are shown
when placed before any integer conversion specifier.

Floating-point Numbers

f Representing fixed-point notation.

E or e Representing exponential notation.

G or g
Representing a number either in fixed or exponential notation, depending upon
the magnitude of the value.

Fig 2.19 illustrates the use of various integer and floating-point conversion specifiers.

1. #include <stdio.h>
2. int main()
3. { /* Integer conversion specifiers */
4. printf("%d \n", 254);
5. printf("%d \n", -254); // prints a number along with the

 minus sign
6. printf("%d \n", +254); // hides the plus sign and prints a

 number only
7. printf("%i \n", 254);

54 | Operators and Input‐Output in C

8. printf("%o \n", 254);
9. printf(“%u \n", 254);
10. printf("%u \n", -254); //-254 is converted to the unsigned

 value 4294967042
11. printf("%X \n", 254);
12. printf("%x \n”, 254);
13. printf("%hd \n", 2500);
14. printf("%ld \n", 2000000000);

 /* Floating-point conversion specifiers */
15. printf("%f \n", 9876543.21);
16. printf("%e \n", 9876543.21);
17. printf("%E \n", 9876543.219);
18. printf("%E \n", -9876543.219);
19. printf("%g \n", 9876543.21);
20. printf("%G \n", 9876543.21);

21. return 0;
22. }

Fig 2.19 Demonstration the use of various integer and floating-point conversion specifiers

Output:

254

-254

254

254

376

254

4294967042

FE

fe

2500

250000000

9876543.210000

9.876543e+06

9.876543E+06

-9.876543E+06

9.87654e+06

9.87654E+06

Computer Programming: Theory and Practicals | 55

2.7.1.2 Printing strings and characters. There are two conversion specifiers, c and s, for printing
characters and strings. A char argument ‘%c’ is required for conversion specifier c whereas, ‘%s’
is required for conversion specifier s. According to the specifier s, characters are displayed till a
null character is encountered (‘\0’). The following program (Fig. 2.20) displays a character and
string using specifiers:

1. #include <stdio.h>
2. int main()
3. {
4. char A = 'C' ;
5. char B[] = "C program";
6. printf(“%c\n”, A);
7. printf("%s\n", "C Program");
8. printf("%s\n", B);
9. return 0;
10. }

Fig 2.20 Demonstration the use of string and character conversion specifier
Output:

C

C Program

C program

2.7.2 Escape sequence
We can see from the above program that the character \n was not printed on the screen despite
being written in the printf statement. The backslash (\) used in the printf statement is called the
escape character. So, an escape sequence is a sequence of characters that starts with a backslash
followed by some character. It is used for formatting the output displayed on the screen. For
example, \n depicts a new line. This new line character is used to move the cursor to the starting
of the following line. Some of the commonly used escape sequences are as shown in Table 2.5:

Table 2.5: Commonly used escape sequences

Escape Sequence Description

\n (New line) It moves the cursor to the start of the next line.

\t (Horizontal tab) It moves the cursor to one tab horizontal space.

\a (Alert) It generates a sound to alert the programmer about
the execution of a program.

56 | Operators and Input‐Output in C

\\ (Backslash) It displays the backslash character in the output.

\” (Double Quote) It displays a double quote character in the output.

There are other escape sequences available in the C programming language. For further reading
you can scan the QR code.

2.7.3 Field widths and precision in printf
Field width describes the size of the field where the data is displayed. The data displayed will be
right justified if the field width is greater than the data that will be printed. All conversion specifiers
allow the usage of field widths. The program below (Fig. 2.21) is used to show the field widths.

1. #include <stdio.h>
2. int main()
3. {
4. printf("%3d\n", 5);
5. printf("%3d\n", 56);
6. printf("%3d\n", 567);
7. printf("%3d\n", 5678);
8. printf("%3d\n", -5); //minus sign takes one character
 position in the field width

9. printf("%3d\n", -56);
10. printf("%3d\n", -567);
11. printf("%3d\n", -5678);
12. return 0;
13. }

Fig 2.21 Demonstration the concept of field width
Output:

Output:
 5
 56
 567
 5678

 -5
 -56
 -567
 -5678

Computer Programming: Theory and Practicals | 57

Precision. In addition, the printf function controls the output's precision. For various forms of
data, precision has varying implications. The precision defines the minimum number of digits to
be shown while using the integer conversion specifier. The zeros are added to the value to be printed
until a total number of digits becomes equal to the precision. The value of precision is written
between the conversion specifier and percent sign. We can combine both precision and field width
in a single printf statement by keeping the field width followed by the precision value. A decimal
point is used to separate the field width and precision value. The example is shown below:

printf("%8.2f", 321.54768);

which displays output 321.54 in eight-digit field having two digits in the right of the decimal
point.
2.8. Input using scanf function
As we have already studied the basic syntax of scanf in unit 1. The scanf command has a format
control string that comprises literal characters and conversion specifiers and defines the input data's
format. The input formatting possibilities of scanf function include

1. Entering data of different types.
2. Entering particular characters from a stream of input.
3. Omitting particular characters from a stream of input.

Syntax of scanf function

scanf(format_control_string, other parameters);

The program (Fig. 2.22) accepts integers as an input using different integer conversion specifiers
and shows corresponding decimal integers as an output.

1. #include <stdio.h>
2. int main()
3. {
4. int x1;
5. int x2;
6. int x3;
7. int x4;
8. int x5;
9. int x6;
10. int x7;
11. printf("Enter the value of variables from x1 to x7 : ");
12. scanf("%d%o%x%u%i%i%i",&x1, &x2, &x3, &x4, &x5, &x6, &x7);
13. printf("Entered value of variables displayed as decimal
 integers are:\n");
14. printf("%d%d%d%d%d%d%d\n", x1, x2, x3, x4, x5, x6, x7);
15. return 0;

58 | Operators and Input‐Output in C

16. }

Fig 2.22 Demonstration of the integer conversion specifiers

Output:

Enter the value of variables from x1 to x7 : -20
20
30
40
50
060
0x80
Entered value of variables displayed as decimal integers are:
-20 16 48 40 50 48 128

*Note: It is assumed that the user enters -20, 20, 30, 40, 50, 060, and 0x80 as an input
Integers in decimal, octal, and hexadecimal forms can be entered using conversion specifier %i.
Similarly, floating point numbers can be entered using e, E, f, g, and G conversion specifiers,
whereas strings and characters are entered using s and c conversion specifiers.

2.9. Input and Output from Files
Apart from taking input from a standard input device and output from a standard output device, the
input and the output can be given through files. The data stored in variables are temporary, as the
data becomes lost on the program's termination. The files are used for keeping the data
permanently. Computer system stores files on secondary memory like a hard disk. In the next
section, we’ll discuss how a file is created and processed by a C program.

2.9.1 What is a file?
A file is a source where software saves information/data as a series of bytes on a hard disk
(secondary storage device). The data stored in the file is permanent. A user can execute different
operations on a file, like creating, opening, reading, and updating the data inside the file. The basic
functions of handling a file in C are shown in Table 2.6:

Table 2.6: The basic functions of handling a file in C

Function Name Detail

fopen() It is used to open an existing file or create a new
file.

fclose() It is used to close a file

Computer Programming: Theory and Practicals | 59

fprint() It is used to write data in a file

fscanf() It is used to read data from a file

Note: It is essential to understand that while interacting with different files in a
program, we must define a file-type pointer. For more details about pointers please
go through the QR Code.

2.9.2 File operations
1. Create or open an existing file. A fopen() function is used to open an existing file or

new file. This function is available in the header file stdio.h. The syntax of the fopen()
function is as follows:

file_ptr = fopen(“ filename”, “ mode”);

fopen() takes two parameters filename and mode where filename is the name of the file which
needs to be opened and mode defines the mode of access of a file. This function returns the file
pointer.

fileptr = fopen(“/Users/CSE/Desktop/program_file.txt”, “w”)
// creating a file “program_file.txt”

● Here, if the file program_file.txt does not exist in the location
/Users/CSE/Desktop, then the function creates a file named program_file.txt and
opens it for writing purposes (mode of access of a file is "w"). Various modes are available
for file operations such as, w, r, a, r+, a+, and w+.

● The “w” mode enables a programmer to edit or create the content of a file.
● The “r” mode enables a programmer to read the content of a file.
● The “a” mode enables a programmer to open a file in append mode.

2. Close a file. A fclose() function closes a file that was opened for some operations. To
close a file, the following syntax is used.

fclose(“ file_ptr”);

where file_ptr is the file pointer linked to the file that needs to be closed.

60 | Operators and Input‐Output in C

 fclose(fileptr);

1. To read and write the data to the file
The functions fscanf() and fprintf() are used for reading and writing the data to the file.
These functions are primarily the file versions of scanf() and printf(), and both require a
pointer pointing to the file. The program shows how to write a number to a file (shown in Fig 2.23).

1. #include<stdio.h>
2. #include<stdlib.h>
3. int main()
4. {
5. int number;
6. File *fileptr;

 /* Writing a number to a file */
7. fileptr = fopen(“/Users/CSE/Desktop/program_file.txt”, “w”);

 //opening a file with write mode
8. printf(“Enter the number to added in a file”);
9. scanf(“%d”, &number);
10. fprintf(fileptr, “%d”, number); // writing a number to the

file
11. fclose(fileptr); //closing the file ‘program_file.txt’

pointing
 by fileptr

12. return 0;
13. }

Fig 2.23 Demonstration of the writing a file

 The above program writes the number inputted by the user and stores it in the file

program_file.txt. Once we execute this program, the file will contain the inputted number.
Now, the next program shows how to read a number from the file and use it in the program (Fig.
2.24).

1. #include<stdio.h>
2. #include<stdlib.h>
3. int main()
4. {
5. int number;
6. File *fileptr;

 /* Reading a number from a file */
7. fileptr = fopen(“/Users/CSE/Desktop/program_file.txt”, “r”);

 //opening a file with read mode

Computer Programming: Theory and Practicals | 61

8. fscanf(fileptr, “ %d”, &number); // reading a number from the
 file

9. printf(“The number is %d” , number);
10. fclose(fileptr); //closing the file ‘program_file.txt’

pointing by fileptr
11. return 0;
12. }

Fig 2.24 Demonstration of reading a file

This program reads a number from the program_file.txt and prints the same number on the monitor
screen as the output.

UNIT SUMMARY

Operators in C

● In C, if we want to multiply two operands p and q, then it should be written as p * q;
that is, it requires a multiplication operator (*), whereas in algebra, multiplication
could have been done by simply writing pq but, the C language interprets pq as an
identifier. Therefore, programming languages explicitly require operators to perform.

● The operators used in arithmetic operations are binary.
● The two integer operand results in an integer result in the case of a division operation.

For example, 11/5 results 2.
● C supports a modulo operator %, which evaluates the remainder after the division of

two integer numbers. For instance, 12%5 results in 2 as a remainder when 12 is divided
by 5. Similarly, 28%7 results in 0 as the remainder.

● In C, when a number is divided by zero it causes immediate termination of a program
and generates a compile-time error. Compile time errors do not allow the program to
execute whereas run-time errors allow programs to execute but result in incorrect
results.

● For ease of programming, C uses a single-line format to write arithmetic expressions.
For instance, “a multiplied by b” should be interpreted as a*b so that both operator
and operands lie in a straight single line.

● The use of parentheses is the same in both C and algebraic expressions. It basically
groups the terms together.

● The C language follows the operator precedence rule to compute the arithmetic
expressions as followed by algebra.

● The precedence of division, multiplication, and remainder operation is higher than
addition and subtraction operators. If there are multiple operators present in an
expression, then a precedence rule is applied to evaluate them.

62 | Operators and Input‐Output in C

● When an expression consists of more than one operator having same precedence, then
they are evaluated from left-to-right - Associativity. Some of the operators follow right-
to-left associativity also.

● The precedence of all the relational operators is the same and follows left-to-right
associativity. Similarly, the assignment operator’s associativity is from left to right and
has lower precedence than relational operators.

● The equality (==) and assignment (=) operators are different. The equality operator
belongs to the relational operator category and is used to check the equality of first
and second operands. Whereas the assignment operator belongs to the arithmetic
operator category and assigns the right-hand operand value to the left-hand operand.

Input Output in C

● Every input and output operation is carried out using a sequence of bytes called
streams.

● printf statement includes a format control string describing a format in which output
will be printed. It consists of literal characters, flags, field widths, and conversion
specifiers.

● Integers are represented using various conversion specifiers such as d, i, u,o, and
x

● for integers (signed and unsigned), octal integers, and hexadecimal integers. The long
and short integers are represented using the modifier l or h, which are prefixed with
the conversion specifier.

● Floating-point numbers are represented using various conversion specifiers such as e
and f for exponential and floating-point notation. The conversion specifier g prints
either in exponential or fixed-point notation, depending upon the value of an exponent.
If the value is greater than or equal to precision and is less than -4 or then we choose
exponential notation.

● Characters and strings are printed using c and s specifiers.
● Escape sequences are used for formatting the output displayed on the screen. The

backslash (\) used in the printf statement is called the escape character.
● Field width represents the actual field size where data has to be printed. The printed

data can be right justified if the data to be printed is smaller than the field width.
● The precision specifies the number of digits to be displayed when used with g specifier.

Whereas it specifies the minimum number of digits to be shown when used with an
integer specifier.

● scanf function is used for accomplishing the input formatting.
● Integers can be entered using conversion specifiers such as d, i, u,o, and x for

integers (signed and unsigned), octal integers, and hexadecimal integers. Similarly,
floating point numbers can be entered using e, f, and g conversion specifiers,
whereas strings and characters are entered using s and c conversion specifiers.

Input-output through files

Computer Programming: Theory and Practicals | 63

● A file is a source where software saves information/data as a series of bytes on a hard
disk (secondary storage device). Files are used for keeping the data permanently.

● There are various file operations like creating, opening, reading, updating and closing
a file.

● fopen function is used to open an existing file or new file. fclose function closes a
file that was opened for some operations.

● fscanf and fprintf functions are used for reading and writing the data to the file.

EXERCISES

Multiple Choice Questions
1. For a standard program, the input is accepted by using _________

(a) files
(b) scanf and Command-line
(c) Both (a) and (b)
(d) None of the above

2. Select the correct method to obtain the user input (integer) value and store it in a xyz variable.
(a) scanf(%d, &xyz);
(b) scanf("%s", &xyz);
(c) scanf("%d", &xyz);
(d) scanf(%s, &xyz);

3. Let us assume we have used float variable money to store money in the Indian rupee that we
want to display in classic banknotes format (ex. ₹3.75). Which statement of printf() will
correctly display that money?

(a) printf("Money: ₹%d", money);
(b) printf(Money: ₹%f, money);
(c) printf("Money: ₹", %f, money);
(d) printf("Money: ₹%0.2f", money);

4. Which is the correct order of precedence of arithmetic operators (from highest to lowest)?

(a) +, -, %, *, /
(b) %, *, /, +, –
(c) %, +, /, *, –
(d) %, +, -, *, /

5. Which of the following are the correct C statements corresponding to the equation p = bq4 +9?

(a) p = b * q * q * q* q + 9;
(b) p = b * q* q * q* (q + 9);
(c) p = (b * q) * q * q * (q + 9);
(d) p = (b * q) * q* q* q + 9;

64 | Operators and Input‐Output in C

Answers of Multiple Choice Questions (MCQS).

1. (c) 2. (c) 3. (d) 4. (b) 5. (a)
Output-based Questions

1. Write the output of the following programs. (Assume every program contains header file
#include<stdio.h>)

A
 int main(){
 int int var1 main(){
 int int var1 = 8;
 printf("Number=%d",var1+
 (var1==8));
return 0;

B
int main(){
 int var2;
 printf("Enter an integer: ");
 scanf("%d", &var2);
 printf("Number = 4,%d",var2);
 return 0;
}

C
int main()
{

 float var1;
 int var22;
 printf("Enter var1: ");
 scanf("%f", &var1);
 printf("Enter var2: ");
 scanf("%d", &var2);
 printf("var1 = %f\n",
var1);
 printf("var2 = %d", var2);

 return 0;
}

D
int main()
{
 int var1 = 5, var2;
 var2 = var1;
 printf("var2 = %d, ", var2);
 var2 += var1;
 printf("var2 = %d, ", var2);
 var2 -= var1;
 printf("var2 = %d, ", var2);
 var2 *= var1;
 printf("var2 = %d, ", var2);
 var2 /= var1;
 printf("var2 = %d, ", var2);
 var2 %= var1;
 printf("var2 = %d", var2);
 return 0;
}

E
int main()
{
 int jkl = 10;
 printf("%d", klj);
 return 0;
}

 F
int main()
{
 int var1=2,var2=4,var3=6,var4;
 var4 =var3>var2>var1;
 printf("%d",var4);
 return 0;
 }

Computer Programming: Theory and Practicals | 65

G
int main(){
 int t = 1, q = -1, r = 0, s;
 s = ++t && ++q || r –;
 printf(“%d”,s);
 return 0;
}

H
 int main(){
 int p = 10;
 int q =6*2+5*4<p*3?6:4;
 printf(“%d ”, q);
 return 0;
 }

Answers of output-based Questions
A. 9 B. Number = 4,5 C. no1 = 2.000000 D. y = 5, y = 10, y = 5, y = 25, y = 5, y = 0

 no2 = 3
 E. compile-time error F. 0 G. 0 H. 4

Short and Long Answer Type Questions

1. Write a C statement to complete separately of the following assignments.
(a) Define two variables sub and y of type float
(b) Store value 25 to variable y.
(c) Store value 10 to a variable sub.
(d) Subtract variable y from the variable sub and store the result in the variable sub.
(e) Print the obtained result.

 (f) Print 1000 in octal form preceded by 0.
 (g) Print 567.3579 with positive (+) and negative (-) sign using exponential notation with 3

digits of precision.
(h) Print 34567 left justified in an 8-digit field.

2. Match the following and also write the associativity of each operator

Operators Type

A. ++ (postfix) -- (postfix) 1. assignment

B. + - (type) ++ (prefix) -- (prefix) 2. unary

C. / * % 3. postfix

D. - 4. equality

E. > < >= <= 5. conditional

F. != == 6. relational

G. ?: 7. multiplicative

H. = -= /= += *= %= 8. additive

66 | Operators and Input‐Output in C

 3. Fill in the blanks
(a) The ______ and _______ conversion specifiers are used for printing characters and strings.
(b) The E, f and e conversion specifiers display _____ digits of precision.
(c) The functions used for input and output formatting is ______ and ______
(d) The _____ and ______ conversion specifiers are used to show signed decimal integers.
(e) The expression 10=b; causes _______ error.
(f) The output of the arithmetic expression 7*3/(3+2*3/2)+9*(10/5) is ______
(g) The output of the logical expression ! (x > 10) && (y == 2) is ______, where x=10

and y=2.
 Answers: (a). %c, and %s (b). 6 (c). scanf and printf (d). %d and %i (e). Compile time error

(f). 21 (g). 1

PRACTICAL

1. There is an IT firm that pays assistants on a commission basis. The commission is 25% of the
monthly gross sale with an additional amount of Rs. 1200 monthly. Write a C program to
compute the commission and prints it. For example, an assistant made a sale of Rs. 65000.00 in
a month. The commission obtained is 25% of 65000 + 1200, which is Rs. 17450.00

 Example of input/output is given below.

Enter sales in Rupee: 50000.00
Earning is: Rs. 13700.00

Enter sales in Rupee: 45040.00
Earning is: ₹12460.00

2. Write a program to apply arithmetic operations (such as add, subtract, multiply, etc.) on two
numbers taken by the user and print their results.

3. Display the numbers from 5 to 10 in the same line using:

i) A single printf statement along with six specifiers.

ii) A printf statement without specifiers.

iii) Six printf statements.

 4. Display the following patterns using the C language. (Hint: use printf statements with
proper escape sequence to print the pattern).

a)
*

 * *
 * * *
 * * * *
 * * * * *

b)
 *
 * *
 * * *
 * * * *
 * * * * *

Computer Programming: Theory and Practicals | 67

KNOW MORE

History of Programming languages. The primary building block of the modern IT industry is a
programming language. It is the collection of instructions and directives humans offer computers
to carry out a specific job. But did you know that the development of programming languages has
a long and colorful chronology?

 About five hundred languages are used in the computer industry for programming, each with its
unique syntax and capabilities. And if you enter who is the father of the computer, the search engine
would point you in Charles Babbage's direction, although he did not create the first line of code.
Ada Lovelace constructed the first language for programming in the year 1883. Later on, some
well-known languages came into the picture.

 High-level programming languages also have a long history that starts with describing the first
computers and ends with trendy tools for creating software. As early programming languages were
very specialized and relied on syntax that was equally arcane and based on mathematical logic. The
research conducted during the mid-twentieth century on compiler theory. And, developer
introduces High-level programming languages, which convey instructions using a more
approachable syntax.

 Between 1942 and 1945, Konrad Zuse developed Plankalkül, the first high-level programming
language. In 1951, Corrado Böhm developed the first high-level language with a companion
compiler (for his doctoral dissertation). FORTRAN, Formula TRANslation, was created in 1956
by a group working in IBM under the direction of John Backus (published in 1956).

The following important languages were created in following years:
Year of release Name Year of release Name

1949 Assembly
Language

1991 Python

1952 Autocode 1991 Visual
Basic

1957 FORTRAN 1993 R
1958 ALGOL 1995 JAVA
1959 COBOL 1995 PHP
1964 BASIC 1995 JavaScript
1970 Pascal 1995 Ruby
1972 C 2000 C#
1972 SQL 2006 PowerShell
1978 MATLAB 2009 GO
1983 Objective-C, C++ 2011 Kotlin
1990 Haskell 2014 Swift

Scan QR code for further information

68 | Operators and Input‐Output in C

REFERENCES AND SUGGESTED READINGS

1. Deitel, P. J. (2015). C how to Program: With an Introduction to C++ (Chapter 2). Pearson
Education India.

2. David Griffiths and Dawn Griffiths (2011). Head First C, O'Reilly Media, Inc

3. https://nptel.ac.in/courses/106104128

4. https://nptel.ac.in/courses/106105171 (lectures for week 2 and week 3)

Dynamic QR Code for Further Reading

The author has created supporting video lectures for each unit. Readers are
encouraged to watch the lectures to better understand the topics covered in
Unit II. However, it is advised to read the book unit first and then see the
videos. The video lectures may not cover the whole unit but are added as
supplementary material.

Computer Programming: Theory and Practicals | 69

d

UNIT SPECIFICS

Through this unit we have discussed the following aspects:
● Need of control statements in programming;
● Types of control statements in C;
● Syntax and semantics of different Selection statements;
● Practice problems on selection statements: if, if…else, switch;
● Syntax and semantics of different repetition statements;
● Practice problems on repetition statements: for, while, do…while;
● Usages of continue, break and goto statements;

All these topics are discussed with detailed examples. Further, if needed, there is reference material
attached to each topic. To maintain the curiosity and interest of the readers, this unit also provides
video links via QR code for the explanation of each topic. At the end of the unit, various types of
exercises are provided that include Multiple Choice Questions (MCQs), output-based questions,
practical exercises, etc. Moreover, a list of references and suggested readings are given at the end
of the unit.

RATIONALE

We begin this unit by explaining the need for control statements in a programming language. We
describe the types of control statements. Next, the syntax and semantics of different types of
selection statements are discussed, which are used for solving a computational problem. Next, it
describes the various repetition statements and their syntax and semantics. We explain the selection
and repetition statements using flowcharts for a better understanding. It also explains the
unconditional statements used in a programming language. Through this unit, we answer three
fundamental questions: 1) How and when to use various selection statements in the C programming
language? 2) How to use loops to execute the specific statements repeatedly? 3) How to collectively
use selection and repetition statements to solve a real-world problem?

PRE-REQUISITES

Basic Mathematics, Unit-I, and II

3 Control Statements in C

70 | Control Statements in C

UNIT OUTCOMES

List of outcomes of this unit is as follows:
U3-O1: Describe the need for control statements in problem-solving using C
U3-O2: Describe types of control statements
U3-O3: Explain syntax and semantics of selection statements
U3-O4: Explain the syntax and semantics of looping statements
U3-O5: Apply selection and looping statements in problem-solving using C

Unit-1

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Mediumg correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6

U3-O1 - 3 2 3 - -

U3-O2 1 3 2 2 - -

U3-O3 2 2 3 2 - 1

U3-O4 2 2 3 2 - 1

U3-O5 2 2 3 2 - 3

Computer Programming: Theory and Practicals | 71

3.1 Introduction
In previous units, we learned that computer programming helps us to solve real-world problems.
To solve a problem, the programmer must have a complete understanding and a planned approach
(an algorithm). An algorithm requires a sequence of steps (actions) to be executed in a specific
order. Consider the following example.

Example. We want to compute the average temperature of the working days from Monday to
Friday of a month. To solve this problem, we need to record the temperature of all the working
days of the month. Then, compute the average temperature and display it to the user.

The whole process can be done in the following steps:

1. Take a week-day as input from the user,

2. Check whether the week-day is a working day or not,

3. If it is a working day, then record the temperature; otherwise, check for the following condition
i.e.

3.1 If the month is completed (following condition) is true, compute the average temperature
and display it.

3.2 If the condition becomes false, go to the next weekday.

4. Process continues for the number of days in a month.
A graphical representation of the above
steps is shown in Figure 3.1. The
diamond-shaped symbol is a decision-
making statement, also known as a
control statement that transfers the
control from one statement to another (it
may not be a sequential statement). In
this Unit, we’ll study various control
statements in the C programming
language.

Note: This graphical representation is
also known as flowchart. It depicts the
flow of computer programs using
various symbols. Please read the
Know More section for more details
about the flowchart.

Fig 3.1 Flowchart of computing the average

temperature of all the working days of a month

72 | Control Statements in C

3.2 Control Statements
Generally, statements written in a C program execute in sequential order (sequence in which
statements have been written). But, certain C statements do not allow sequential execution; instead,
they transfer the control to execute statement (other than the one in sequence). This is known as a
transfer of control.
There are two types of control statements in the C programming language.

1. Selection statements: if, if..else, switch
2. Repetition statements: for, while, do..while

It is to be noted that, in this unit, the word ‘statements’ and ‘instructions’ are used interchangeably
and conveys the same meaning. The types of control statements are shown in Fig 3.2.

Fig. 3.2 Types of control statements

3.3 Selection Statement
In real life, there are times when we make choices, and then we determine what to do next based
on those choices. Similar scenarios can occur while programming where we must make choices
and execute the following code block based on the choice made. The C language provides two
kinds of selection structures. These are as follows, if-else statement and switch statement.
These are also known as decision-making statements. These statements decide the sequence of
program execution. The if-else statement is further classified as the if statement, if-else
statement, if-else-if statement, and nested if-else statement, as shown in Fig 3.2.

3.3.1 The if statement
It is a conditional statement that chooses a statement or a set of statements (action) to execute when
the condition becomes true; otherwise, it skips the action. It is the simplest decision-making
statement supported by a programming language. The if statement is responsible for selecting or
skipping a single action. For example, a student passes if he scores more than equal to 40 marks in
an examination. Check whether a student passed an examination.

Computer Programming: Theory and Practicals | 73

 It can be solved using a single if statement as it consists of a single action (decision). A flowchart
illustrating the if statement is shown in Fig 3.3. A diamond symbol in a flowchart is used to
represent a decision. The decision symbol contains an expression that can either be true or false. If
an expression results in zero, it is considered false, and if it results in a non-zero value, it is
considered true. The flowchart starts and ends with an oval symbol.

Fig 3.3. Flowchart of if statement

The syntax of the if statement is given below.

1. if (expression)
2. {
3. set of statements; // statements executes when the expression evaluates to true.
4. }

The if statement expression results in a boolean value. It could be either true or false. If the
expression becomes true, then the body of the if statement executes; otherwise not. The open brace
{ (line 2) and close brace } (line 4) marks the beginning and end of the body of the if statement.
These braces are required when the body of if contains more than one statement to be executed.
If these braces are not provided, the first statement after the if expression is considered its body.
An example of if statement is shown in Fig 3.4.

74 | Control Statements in C

 Fig 3.4 Demonstration of the if statement

 Output:

Enter marks 50
You have passed an examination

*Note: It is assumed that the user enters 50 as an input

 Fig 3.5 Interpretation of if statement

Fig 3.5 shows the interpretation of if statement. If the expression evaluates to true, then only
statement1 will be considered as the body of the if statement and executes it; otherwise, skips it.
statement2 and statement3 are not a part of if statement body. So, they get executed in both
scenarios if the expression evaluates to true or false.

1. if (var1 == 10)

 printf(“ value is 10”);
2. if(var1 == 10)

 {
 printf(“ value is 10 ”);

 }

Note. Both 1 and 2 are correct and output the same result. But programmers like to keep the
code short and clear. So, they prefer 1 (without braces) to write the body if it contains only a
single statement.

3.3.2 The if-else statement

It is a conditional statement that chooses a statement or a set of statements (action) to execute when
the condition becomes true; otherwise, it executes another set of statements (action). The if-else
statement selects one of the two actions. For example, a student passes if he scores more than equal
to 40 marks in an examination. Check whether a student passed or failed an examination.

 The if-else statement checks the condition and performs some actions based on whether the
condition gets true or false. A flowchart is shown in Fig 3.6. We can see that a decision symbol

Computer Programming: Theory and Practicals | 75

contains an expression that can evaluate as true or false. If it is true, “You have passed an
examination” is printed; otherwise, “You have failed an examination” is printed.

Fig 3.6. Flowchart of if..else statement

The syntax of the if..else statement is shown below:

1. if (expression)
2. {
3. set of statements; //statements executes when the expression evaluates to true
4. }
5. else
6. {
7. set of statements;//statement executes when the expression evaluates to false
8. }

Here, we can see that there is no condition associated with the else statement. These statements
execute only if the condition gets false. An example of the if..else statement is shown in Fig
3.7.

Fig 3.7 Demonstration of if..else statement

Output:

76 | Control Statements in C

Enter marks 35
You have failed an examination

Now, we’ll head toward learning the next conditional statement, that is, if-else-if.

3.3.3 The if-else-if statement

This conditional statement is an extension of the if..else statement. It is also known as the if-
else-if ladder. Here, expression is evaluated from top to bottom. If it evaluates to true, then the
body related to the expression is executed, and the rest of the ladder is ignored. The last else
statement is the default statement, which gets executed when none of the conditions becomes true.
It is used for checking multiple conditions. For example, we want to compute the division (first,
second and third) according to the marks earned by a student.

 The flowchart for computing the division is shown in Fig 3.8. There are three decision-making
symbols present in the flowchart. The first decision-making symbol checks if the marks are greater
than or equal to 60, then it prints ‘First Division’. If the condition becomes false, the next
expression written in the second decision-making symbol is checked, and if it becomes true, the

second division is printed. Again, if the second condition becomes false, the third condition for the
third division is checked. If all of the condition becomes false, the last printf statement is printed,
that is, fail.

Fig 3.8. Flowchart of if-else-if statement

Note: The functioning of the conditional operator (? :), studied in Unit II, is the same as the
if..else statement. Could you try writing the same code using the ternary operator?

Computer Programming: Theory and Practicals | 77

The syntax of the if-else-if statement is shown below:

1. if (expression)
2. {
3. set of statements;
4. }
5. else if (expression)
6. {
7. set of statements;
8. }
9. else if (expression)
10. {
11. set of statements;
12. }
13. .
14. .
15. .
16. else
17. {
18. set of statements;
19. }

The if-else-if ladder always begins with an if condition followed by multiple else if
condition and ends with a default else statement. When any of the conditions get true, the printf
statement associated with it is executed. After then, the program execution comes to an end by
skipping the last else statement. An example of the if-else-if ladder is shown in Fig 3.9.

 Fig 3.9 Demonstration of if-else-if statement

78 | Control Statements in C

Output:

Enter marks 67
67
First Division

Now, we’ll discuss the last conditional statement, which is a nested if-else statement.

3.3.4 The nested if-else statement
Nesting is defined as adding various if-else statements in a body of if and else. It is used to
check a condition within a condition. The nested if-else statement places an if statement inside
another if statement. For example, check whether a student passes or fails an examination and
calculate the division by which he passes an examination.
The flowchart is shown in Fig 3.10. We can see that the first decision-making symbol is checking
whether a student passed an exam or not. If he passes, the control goes to the next decision-making
statement, computing whether a student earned first division or not. If yes, it prints the first division;
otherwise, it will check for the third decision-making statement that checks for the second division.
If yes, it prints the second division; otherwise, it will check for the last decision-making statement,
which checks for the third division.

Fig 3.10. Flowchart of nested if-else statement

The syntax of the nested if-else statement is shown below:

Computer Programming: Theory and Practicals | 79

1. if (expression)
2. {
3. //enters the body when the expression evaluates to true
4. if (expression)
5. {
6. statements; // executes statements when the second expression evaluates to

true.
7. }
8. else
9. {
10. statements; // executes statements when the second expression evaluates to

false.
11. }
12. }
13. else
14. {
15. statements;
16. }

Fig 3.11 Demonstration of nested if-else statement

80 | Control Statements in C

The body of if can contain the if, else-if or if-else-if ladder and the body of else can
also contain if-else statements. It is important to remember that only one block executes either
if or else, depending on the conditions. When if block executes, the else block is skipped and
vice versa.

Output:

Enter marks 77
First Division

An example of a nested if-else statement is shown in Fig 3.11. If a student passes the
examination, the control goes into the if’s body and computes the division based on earned marks;
otherwise, it executes the else’s body, and prints Fail. The next decision-making symbol inside
its body checks for a student's division. Here, we used the if-else-if ladder to check the
student’s division. So, if the if condition gets true, the associated printf statement executes
otherwise, control goes to the else if condition and checks it for the second division. If this
condition gets true, ‘Second Division’ is printed; otherwise, the body of else executes and prints
Third Division.

Scan QR

for Answer

The compiler might get confused about to which if-statement the else part belongs. This is known
as the dangling else problem, shown in Fig 3.12. The problem arises when one else statement
corresponds to multiple if statements. The else becomes dangling else. It occurs only in nested if-
else statements. In such cases, the else clause belongs to the innermost if statement.

Fig 3.12 Demonstration of dangling else

However, the else can become part of another if statement by enclosing it within braces. In Fig
3.13, the else clause is the part of the outermost if statement.

eQuestion 3.1 What happens when there are multiple if statements and a
single else statement in a program?

Computer Programming: Theory and Practicals | 81

Fig 3.13 Demonstration of dangling else

Fig 3.14. Flowchart of the switch statement

82 | Control Statements in C

3.3.5 The switch statement

This statement is an alternative to the if-else-if ladder. It is used for executing multiple
operations against the evaluated value of an expression. For example, Design a calculator to
perform basic arithmetic operations by taking two numbers from the user.

 The flowchart is shown in Fig 3.14. It takes two numbers from the user and displays all the
arithmetic operations; then, a user chooses one of the operations to be performed on the numbers.
The operation that a user chooses matches the different case values. If it matches, the operation
associated with the case is performed; otherwise, it matches with the next case value. The default
case is executed if it doesn't match any of the cases.

The syntax of the switch statement is shown below:

1. switch(expression)
2. {
3. case value 1: statements;
4. break;
5. case value 2: statements;
6. break;
7. ...
8. ...
9. case value n: statements;
10. break;
11. default: default statement;
12. }

It evaluates the expression, matches it with the case value, and executes the statements associated
with that case value. The expression can be of char or int type. The type of expression and the
case value should always be the same. There can be multiple case values present in a switch
statement. The break statement is optional, which is present against each case value. It terminates
the switch block's execution and transfers the control from the switch body to the main program. If
it is not present, all the statements followed by the matched case value will be executed either until
it encounters a break statement or completes the program execution. The example is shown below
in Fig 3.15.

Computer Programming: Theory and Practicals | 83

Fig 3.15 Demonstration of switch statement

Output:

Select operator (+, -, /, *,%): *
Enter two numbers: 23 34
Multiplication is 782

*Note: It is assumed that the user enters 23 and 34 as an input

Next, we’ll discuss the second type of control statement, repetition statements, in the following
section.

3.4 Repetition Statement
Let us consider a listener who wants to listen to several songs. For that, he has two ways:

Question 3.2 Can you try solving the same example we took for the if-else-if
ladder using the switch statement?

84 | Control Statements in C

First way: The listener can play the songs one by one, in which he has to play a new song by
himself every time the old one is over.
Second way: The listener adds all selected songs to a playlist, and a player plays the songs one by
one. After finishing the old song, the player runs a new song; this process repeats until the playlist
is not finished. The listener can listen to his complete playlist without bothering to play songs
repeatedly. The flowchart shows the process of second way of playing the songs using the loop
shown in Fig 3.16.

Fig 3.16 Flowchart to play song playlist

In the C programming language, repetition statements are also known as looping or iteration
statements.
 Loop is used to perform the same task repeatedly. Every loop has its body which consists of
several instructions to perform a specific task. The loop's body starts from the { and end with the
}. The loop iterates the number of statements written inside it until the condition is not false. The
loop is known as finite if it stops executing after a specific iteration. A loop is infinite if it continues
to execute the statements written inside its body. The main advantage of the loop is that it reduces
the size of the code

The execution condition controls the execution of the loop. Based on the execution condition, the
loop is divided into two types:
1. Entry control loop

a. while loop
b. for loop

2. Exit control loop

Computer Programming: Theory and Practicals | 85

a. do-while loop

3.4.1 Entry control loop
The loop which checks the condition first before executing the loop’s body is known as the entry
control loop. The while and for loops are the entry control loop.

while loop. The while loop is the type of entry control loop. In this loop, first, the condition is
checked, and if the condition is true, then statements written inside the loop will be executed
otherwise, the loop will be terminated. The flowchart of the while loop is shown in Fig 3.17.

Fig 3.17 Flowchart of while loop

Syntax of while loop

Initialization;
while(condition)
{
 instructions;
 Variable updating statement (Increment/Decrement);
}

Steps involved in the while loop:

Step 1: This is the initializing step. Here value will initialize to the loop variable.
Step 2: The while loop checks the condition. If the condition is true, the loop's body will

execute; otherwise, the loop will terminate.

86 | Control Statements in C

Step 3: The statements written inside the body will execute. Also, the variable's value will update
and return to the condition check.

Step 4: The body of the while loop will execute until the condition is not false. The loop will
terminate when the condition is false, and the statements written after the loop will
execute.

Example: Suppose we want to print the number from 0 to 4; this can be done using the loop, shown
in Fig 3.18.

Fig 3.18 Program to print numbers from 0 to 4 using a while loop

The above example prints 0 to 5 numbers on the output screen. In this, line 5 initializes the loop
variable (var1). Line 6 is the entrance of the while loop, where it checks the condition. If the
condition is true, it returns 1, and the loop's body will execute. In line 9, value of the variable will
update, and control of the loop will go back to line 6. This process will continue until the condition
is not false. The output of the given an example shown is below.

Output

var1= 0
var1= 1
var1= 2
var1= 3
var1= 4

for loop. The for loop is also a type of entry control loop. It is the most popular loop structure.
This loop checks the condition before executing the body. If the condition is true, then the loop's
body will execute. If the condition is false, then the loop terminates. The flowchart of the for loop
is shown in Fig 3.19.

Computer Programming: Theory and Practicals | 87

Fig 3.19 Flowchart of for loop

Syntax of the for loop

for(Initialization ; Condition ; Updation)
{
 Instructions // body of the loop
}

 The for loop is divided into three blocks apart from the body: initialization, condition, and
updation. Each part is separated by the semicolons (;).

Steps involved in execution of the for loop:
Step 1: The execution of the loop starts from the initialization part that initializes the loop

variable. This part executes only one time.
Step 2: After the initialization part, the condition part will execute. If the condition is true, then

the control of the loop will go inside the loop's body.
Step 3: The loop's body contains multiple instructions to perform a specific task. The loop's

body will execute when the condition block returns 1 (true). After executing the loop's
body, control will transfer to the updation block.

Step 4: In the updation block loop's variable will update, and the control goes to the condition
block. This process will continue until the condition is not false.

Example: Suppose we want to print the number from 0 to 4; this can be done using the for loop,
shown in Fig 3.20.

88 | Control Statements in C

Fig 3.20 Program to print numbers from 0 to 4 using a for loop

Output

var1= 0
var1= 1
var1= 2
var1= 3
var1= 4

The above example prints numbers from 0 to 4 using the for loop. Here in line 5, we use the for
loop. The initialization, condition, and variable updating are done in their respective parts in the
for loop. The initialization part initializes the variable var1 by 0; it is executed only once and at
the start of the loop. Next, the condition var1<5 executes, and if it is true, the loop's body executes.
In the end, updation block will execute, which increases the value of var1 by 1(var1++). The
flow of for loop (condition→ loop's body → updation→condition) will continue until the
condition block is not false.

Note:
 The for loop can be written with empty initialization, condition, or updation blocks. If the

for loop is written without any condition, then that loop is an infinite loop.
Example:
for(; ;)
{
 printf(“Without condition\n”);
}
Following code print Without condition infinite times.

 If we put a semicolon (;) after the for loop, the loop becomes a single-line statement. It means
the loop will execute properly, but all the statements written inside the body will be treated
outside the loop and will not execute repeatedly.
Example:

Computer Programming: Theory and Practicals | 89

for (int var1=0; var1<5; var1++);
{
 printf(“loop with a semicolon\n”);
}

The following code will print loop with a semicolon once, but the value of var1 will be
5 after executing the loop. Because the loop will execute until the condition is not false, but due
to the semicolon, it becomes a single line statement and does not execute the loop body.

3.4.2 Exit control loop
The loop that checks the condition after executing the loop body is known as the exit control loop.
The do-while loop is the exit control loop.

do-while loop
This loop first executes the loop’s body and then checks the condition. If the condition is true, the
loop body is executed again; otherwise the loop terminates. The body of do-while loop executes
at least once because the loop control condition is checked at the end of the loop’s body. The flow
of the do-while loop is shown in Fig 3.21.

Fig 3.21 Flowchart of the do-while loop

90 | Control Statements in C

Syntax of the do-while loop

Initialization;
do
{
 Instructions; //body of the loop
 Updation; //increment/decrement operations
}while(condition);

Steps involved in the execution of the do-while loop:
Step 1: Initialize the loop’s variables before executing the loop.
Step 2: Loop starts from the do keyword; first, the loop’s body will execute.
Step 3: Loop’s variables are updated inside the body.
Step 4: The condition for the loop control is written inside the while, which executes after the

loop’s body. If the condition is true, the loop’s body will execute again; otherwise, the
loop will terminate.

Fig 3.22 Program to print numbers from 0 to 4 using a do-while loop

Output

var1= 0
var1= 1
var1= 2
var1= 3
var1= 4

Computer Programming: Theory and Practicals | 91

Note: We can write a loop without the body; in this case, the next statement written after the
loop is considered the loop body statement. So, if we have only one statement inside the loop,
we can write it without the body.

Example:
for (int var1=0; var1<5; var1++)
printf(“loop with single statement\n”);

In this case, loop with single statement prints 5 times

Similarly,

while(var1==0)
printf(“loop with single statement\n”);

and

do
printf(“loop with single statement\n”);
while(var1==0);

The example shown in Fig 3.22 prints numbers from 0 to 4 using the do-while loop. Here loop’s
variable initializes at line 5. The body of the loop will start after the do keyword. Thus, first, the
body will execute and print the variable var1 value on the screen. In line 9, the value of the var1
will be incremented by 1, and it also marks the end of do-while loop. After that condition written
inside the while executes. If the condition is true, the loop's body will execute again; otherwise, the
loop will terminate.

break and continue statements
The break and continue are the statements used to control the loops. They both are unconditional
statements.

break statement
The break statement is used for two purposes in C language. First, it stops the execution of the
case in a switch statement. Second, it stops the current execution and send the control outside
the loop. So, whenever the break statement executes, it terminates the current loop and sends the
control or flow of the program just after the loop.

Syntax

break;

92 | Control Statements in C

Example: Here, we extend the previous example (shown in Fig 3.22). In this, we terminate the loop
using the break statement whenever the value of var1 reaches 3, shown in Fig 3.23.

Fig 3.23 Demonstration of the break statement

In the above example, we used a break statement inside the if. Therefore, when the if statement
condition is true, the break will execute. The break statement terminates the loop and sends the
control outside the loop. In above example, specifically, when var1 is at 3, the condition of if
will be true, the break will execute, and the loop will terminate. That's why 3 will not print on the
output screen.

Output

var1= 0
var1= 1
var1= 2

continue statement
The continue statement is used to skip the current iteration in the loop. Whenever the continue
statement executes, it interrupts the flow of the loop and sends the control to the end of the body
(}) for the current iteration only. So, the statements written after the continue statement will not
be executed.

Syntax

continue;

Example: Here, we update the previous example (Fig 3.23). In this, we write a program to skip the
value of 2 when the program prints numbers from 0 to 4, shown in Fig 3.24.

Computer Programming: Theory and Practicals | 93

Fig 3.24 Demonstration of the continue statement

In the above example, we used a continue statement inside the if. When var1 is at 2, the
condition of if will return true, the continue statement will execute, and the control of the loop
will be transferred to the end of the body. After that, the variable's value will update (from 2 to
3) in the updation block, and the next iteration will start. That's why 2 will not print on the output
screen.

Output

var1= 0
var1= 1
var1= 3
var1= 4

Another example is to check given number is a prime number or not is given in Fig 3.25. It takes
an integer number from the user to check the prime number in line 5. In line 6, we initialize a mark
variable with a 0 value. This variable is used to verify that the given number is divided by the other
than itself and 1 or not; if yes, then at line 11, we update it with 1 and terminate the loop using the
break statement. After executing the loop, we check the status of the mark variable. If it remains
0, the given number is not divisible by other numbers except by itself and 1, and the message The
given number is a prime number will print on the screen. Otherwise, it will print that The
given number is not a prime number.

94 | Control Statements in C

Fig 3.25 Example to check prime number

Output

Enter the integer number to check the prime number 11
The given number is a prime number

*Note: It is assumed that the user enters 11 as an input

Another example: suppose we want to design a calculator which will perform arithmetic operations
until the user does not say exit. Here we follow some simple steps to create such a type of calculator:

1. Design a calculator that performs the simple arithmetic task. (This can be done using the switch
statement, as we have already done in Fig 3.15)

2. Next, put the switch statement inside the loop.

Computer Programming: Theory and Practicals | 95

Fig 3.26 Calculator using the do-while loop

In the above example (Fig 3.26), we create a calculator that performs an arithmetic operation. For
continuous execution, we put it in the loop. Here we used the do-while loop because do-while
executes the instruction at least once without checking the condition, and we want to perform the
arithmetic operation at least once. In lines 25 and 26, it asks the user for a character ‘y’ or ‘Y’ for
the continuation; if the user inputs ‘y’ or ‘Y’, then in line 27 condition will be true, and the loop
will continue for the next iteration. The loop will be terminated if the user inputs other characters
in place of the ‘y’ or ‘Y’.

96 | Control Statements in C

Output

Select operator (+, -, /, *, %): *
Enter two numbers: 23
2
Multiplication is 46
For the continue enter y or Y
y
Select operator (+, -, /, *, %): -
Enter two numbers: 23
45
Subtraction is -22
For the continue enter y or Y
n
Calculator terminated

*Note: It is assumed that the user enters 23 and 2 as an input

3.4.3 Nested loop
When one loop is written inside another loop is known as a nested loop. It is also called a loop
inside the loop. Any number of loops can be defined inside another loop. The depth of nesting can
be n. Fig 3.27 shows the flow of the nested loop, where the inner and outer loop can be any loop
(while, for and do-while).

Fig 3.27 flow chart of the nested loop

Computer Programming: Theory and Practicals | 97

 The loop containing another loop is known as the outer loop, and the loop written inside the other
loop is known as the inner loop.

Outerloop
{
 Body of the outer loop;
 Innerloop
 {
 Body of the inner loop;
 }
}

For a better understanding of the nested loop, let's take the example of printing the prime number
between 1 and 50. We used the inner loop (line 8) to check the given number. If the number is a
prime number, it will print on the screen (as we have already seen in Fig). The outer loop (line 5)
chooses numbers one by one for checking the prime. This loop iterates from 2 to 50 (As we already
know that 1 is not the prime number, so we start the outer loop from 2). In every outer loop iteration,
the inner loop checks whether the corresponding number is a prime number or not, as shown in Fig
3.28.

Fig 3.28 Demonstration of the nested loop

98 | Control Statements in C

Output

The prime number between 1 to 50 are
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Another examples:
Let’s take an example to calculate the factorial of the given number.

Fig 3.29 Program to calculate the factorial

To calculate the factorial of any number, we have to compute the multiplication of all positive
integers less than the number. So here, we start the loop from 1 to num_var, where num_var is
the user-entered number, and perform the multiplication between the loop variable (var1) and
fact_var. The fact_var is the variable initialized by 1 and is used to store the product's result
in each iteration, shown in Fig 3.29.

Output

Enter an integer number: 5
Factorial of 5 is: 120

*Note: It is assumed that the user enters 5 as an input

3.4.4 goto statement
It is a jump statement that transfers the program's control from one place to another within the
function. The goto statement sends the program's control to the specific label already defined in
the program. Transferring the control does not depend on the condition that's why it is also known
as the unconditional jump statement. The label can be defined before or after the goto statement.
The name of the label can also be changed.

Computer Programming: Theory and Practicals | 99

Syntax

label:
…
…
goto label;

goto label;
…
…
label:

In the above syntax, goto transfers the program control to the specific label after reading the goto
label.

Example

Fig 3.30 Demonstration of the goto statement

In the above example (Fig 3.30) defines the label in line 6 as here. After the execution of the goto
statement (at line 10), the control of the execution will transfer at the specified label here, which
will continue until the if statement will not return false.

Output

0 1 2 3 4 5

UNIT SUMMARY

Introduction
 Generally, statements written in a C program execute in sequential order (sequence in

which statements have been written).
 There are certain C statements that do not allow sequential execution; instead, they

transfer the control to execute statement (other than the one in sequence). This is known
as transfer of control.

100 | Control Statements in C

 There are two control statements for writing any C program: selection statements and
repetition statements.

Selection Statements
 They are also known as decision-making statements as they decide the sequence of

program execution.
 These are of two types: if-else and switch statements. The if-else statement is further

classified as the if statement, if-else statement, if-else-if statement, and nested if-else
statement.

 The if-statement is the simplest decision-making statement and is responsible for
selecting or skipping a single action.

 The if-else statement selects one of the two actions. It executes a set of statements when
the condition gets true; otherwise, it executes another set of statements.

 The functioning of the if-else statement is the same as the conditional operator (?:) which
is a ternary operator.

 If a single statement exists in the if’s body, opening and closing braces can be avoided.
 The if-else-if statement is known as the if-else-if ladder. The if-else-if ladder always

begins with an if condition followed by multiple else if condition and ends with a default
else statement.

 Nesting is defined as adding various if-else statements in a body of if and else. The nested
if-else is used to check a condition within a condition.

 The problem of dangling else arises in a nested if-else statement when there is one else
statement that corresponds to multiple if statements. In such cases, the else becomes part
of the innermost if statement.

 The switch statement is the alternative to the if-else-if ladder. It is used for executing
multiple operations against the evaluated value of an expression.

 It evaluates the expression, matches it with the case value, and executes the statements
associated with that case value. The expression can be of char or int type.

Repetition Statements

 The repetition statements are used when we repeatedly want to perform the same task
(action). Loops are used as repetition statements.

 Every loop has its body which consists of several instructions to perform a specific
task. The loop iterates the number of statements written inside it until the condition is
not false.

 There are two types of loops: entry-controlled and exit-controlled loops.
 The loop which checks the condition first before executing the sloop’s body is known as

the entry control loop. The while and for loops are the entry control loop.
 The for and while loop first checks the condition, and if the condition is true, then

statements written inside the loop will be executed otherwise, the loop will be terminated.
 The for loop is divided into three blocks apart from the body: initialization, condition,

and updation. Each part is separated by the semicolons (;).

Computer Programming: Theory and Practicals | 101

 The loop that checks the condition after executing the loop body is known as the exit
control loop. The do-while loop is the exit control loop.

 This loop first executes the loop’s body and then checks the condition. If the condition is
true, the loop body is executed again; otherwise, the loop will be terminated.

 The do-while loop executes at least once because the loop control condition is checked
at the end of the loop’s body.

 The break and continue are the statements used to control the loops. They both are
unconditional statements.

 Break statement is used to stop the execution of the loop and send the control outside the
loop, which executes the statements written after the loop.

 The continue statement is used to skip the current iteration in the loop. Whenever the
continue statement executes, it interrupts the flow of the loop and sends the control to
the end of the body for the current iteration only.

EXERCISES

Multiple Choice Questions

1. Suppose the programmer wants to run some instructions using the loop, but he wants to ensure
that these instructions should be run at least once. Which loop should he have to use?
(a) for loop
(b) do-while loop
(c) while loop
(d) All of these

2. The continue statement is used in the loop when the programmer wants to ____________.
(a) skip the specific statements
(b) terminate the loop
(c) interrupt the loop
(d) None of these

3. Which unconditional statement is used to shift the program control from one place to another
within a function?
(a) do-while
(b) if-else
(c) while
(d) goto

4. Which conditional statement would be useful for making a decision based on multiple choices?
(a) if
(b) if-else
(c) if-else-if

102 | Control Statements in C

(d) None of these

5. Which keyword is used to handle the unwanted case in the switch?
(a) case
(b) break
(c) switch
(d) default

Answers to Multiple Choice Questions (MCQs).
1. (b) 2. (a) 3. (d) 4. (c) 5. (d)

Output-based Questions. (What will be the output of the following programs?)

A
#include<stdio.h>
int main()
{
 if(-10)
 printf("H");
 printf("I");
 else;
 printf("By");
 printf("e");
 return 0;
}

B
#include<stdio.h>
int main()
{
 int var1 = 0;
 for (var1=2.6; var1<7.3; var1++)
 {
 printf("%d ", var1);
 }
 return 0;
}

C
#include<stdio.h>
int main()
{
 int var1=3.4;
 switch(var1)
 {
 case 1: printf(" 1");
 case 3: printf("%d ",var1++);
 case 6: printf(" 6");
 default: printf(" Default");
 }
 switch(var1)
 {
 case 1: printf(" 1");
 case 3: printf(" 3");
 case 6: printf(" 6");
 default: printf(" Value"); break;
 }
 return 0;}

D
#include<stdio.h>
int main()
{
 int var = 97;
 while (var <= 104) {
 printf("%c", var);
 if (var % 5 == 0)
 printf("\n");
 else
 printf(" ");
 var++;
 }
 return 0;
}

Computer Programming: Theory and Practicals | 103

E
#include<stdio.h>
int main()
{
 int var = 97;
 for(var =0; var; var++)
 if(var<3)
 printf("My Rules ");
 printf("No Rules ");
 return 0;
}

F
 #include <stdio.h>
 int main()
 {
 printf("%c ", 65);
 goto level1;
 printf("%c ", 66);
 level1:goto level2;
 printf("%c ", 67);
 level2:printf("%c ", 68);
 }

G
 #include <stdio.h>
 int main()
 {
 int var1=97;
 for(; var1<101; var1++)
 {
 printf("%d", var1);
 for(int var2=var1; var2<=var1;
var2++)
 {
 printf(": %c, ", var2);
 }
 }
 return 0;
 }

H
#include <stdio.h>
int main()
{
 int var1 = 1, var = 0;
 while(printf("%d ",var1--)&&
var<5)
 {
 if (var1==0)
 var++;
 var1++;
 }
 printf("%d ", var1+var);
 return 0;
}

I
#include<stdio.h>
int main()
{
 int p;
 if(p=3,4,5,6)
 printf("Computer ");
 else
 printf(" Programming");
 printf("%d\n",p);
 return 0;
}

J
#include<stdio.h>
int main()
{
 int p = 1, q = -1, r = 0, s;
 s = ++p && ++q || r –;
 if(s)
 printf(“Computer \n”);
 else if(r)
 printf(“Programming \n”);
 else
 printf(“Computer Programming
\n”);
 return 0;
 }

Answers of output-based Questions

104 | Control Statements in C

A. Compile-time error B. 2 3 4 5 6 7 C. 3 6 Default Value D. a b c d
 e f g h

E. No Rules

F. A D G. 97: a, 98: b, 99: c, 100: d, H. 1 1 1 1 1 1 5

I. Computer 3 J. Programming

Short and Long Answer Type Questions

1. Replace the statements with the code which can print the following output

for (var1=0; var1<50; var++)
 { statements; }

(a) 5 10 15 20 25
(b) 2 3 5 7 11 13 17
(c) 0 3 6 9 12 15 18 21
(d) 1 11 21 31 41

2. Fill in the blanks
(a) In the switch statement, the ____________will run when the entered choice in switch

statement does not match with any of the cases.
(b) The ____________ loop is used when we need to execute specific statements at least once.
(c) In a for loop if the condition block is empty then the loop will be _____________.
(d) The __________ statements are also known as the unconditional jump statement. They can

shift the control of the program from anywhere to anywhere within the function.
(e) The _________ statement is used to exit from the loop or the switch statement at a specific

condition.

Answers:
(a) default (b) do-while (c) infinite (d) goto (e) break

3. The following are incomplete programs along with their outputs. Complete the programs by
writing the appropriate code to get the desired output.

A
1. #include<stdio.h>
2. int main()
3. {
4. for(int var1=0;var1<5;var1++)
5. {
6. printf("I love ");
7. ___________; // Fill in the blanks
8. }
9. printf("Programming");
10. return 0;

Computer Programming: Theory and Practicals | 105

11. }
Output: I love Programming

B
1. #include<stdio.h>
2. int main()
3. {
4. switch(2)
5. {
6. case 1:
7. printf("No ");

8. case 2:
9. printf("%s","I Love ");
10. goto prog;

11. case 3:
12. printf("Coding ");

13. case 4:___________ // Fill in the blanks
14. printf("Programming ");
15. }
16. return 0;
17. }
Output: I Love Programming

C
1. #include<stdio.h>
2. int main()
3. {
4. for(int var1=0;var1<5;var1++)
5. {
6. for(int var2=______; var2<5; var2++) // Fill in the blanks
7. printf("*");
8. printf("______");
9. }
10. return 0;
11. }
Output:

**
*

106 | Control Statements in C

D
1. #include<stdio.h>
2. int main()
3. {
4. int var1=_______; // Fill in the blanks
5. _____{ // Fill in the blanks
6. printf("Repeat ");
7. var1--;
8. }while(var1!=0);
9.
10. return 0;
11. }
Output: Repeat Repeat

Answers:
A. Line 7: break B. Line 13: prog: C. Line 6: var1 and line 8: \n D. Line 4: 2 and
line 5: do

PRACTICAL

1. Write a program to ask the user to enter an integer number and perform the following
operations:
(a) Count the total number of digits present in a number.
(b) Count the sum of event digits of the number.
(c) Count the sum of odd digits of the number.
(d) Count the sum and average of all the digits of a number.

2. Write a program using nested if-else to find whether an entered number is negative, positive or
zero.

3. Write a program to find the GCD (Greatest Common Divisor) of two numbers using a while
and a for loop. For example, Two input numbers are 46 and 9. The GCD of the two numbers
is 1.

4. Write a program to find the largest among the three numbers using:
(a) if and logical and (&&) operator
(b) Nested if-else statement

5. Write a program to display the following patterns. In this program user will enter the size of
the pattern in terms of the rows, and based on that, the pattern will adjust.

Computer Programming: Theory and Practicals | 107

*
* *
* * *
* * * *
* * * * *

* * * * *
* * * *
* * *
* *
*

 *
 * * *
 * * * * *
 * * * * * * *
* * * * * * * * *

* * * * * * * * *
 * * * * * * *
 * * * * *
 * * *
 *

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5

1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

 1
 2 3 2
 3 4 5 4 3
 4 5 6 7 6 5 4
5 6 7 8 9 8 7 6 5

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1

KNOW MORE

Flowchart. The flowchart is a way to show the proper flow of the process. It is the diagrammatical
representation of the process's execution. In the flowchart, the box represents the steps involved in
the task's execution, and the arrow represents the order of the step's execution. The flowchart
consists of symbols to represent the steps involved in the task's execution. The description of the
common symbols is shown below.

Symbol Name Description

Flowline Flowline used to connect two symbols. The head of the
flowline (arrow) represent the flow of the process.

Terminal It is used to show the starting and ending point of the
process.

Process The rectangle box used to show the process.

Input/Output The parallelogram used to represent the input/output steps.

 Decision The diamond shape used to represent the decision step in
the flow chart.

Example: Suppose we want to check whether a given number is even or odd.

For the above example, we have to follow the following steps:

1. Take a number from the user

108 | Control Statements in C

2. To Check whether the given number is even or odd we will divide it by 2 (In c language the
modulus operator used to find the reminder).
 If we get reminder 0, the number will be even; otherwise, it will be odd.

For the better understanding these steps can be represented by the flowchart

Fig 3.31 Flowchart to check even or odd number

REFERENCES AND SUGGESTED READINGS

1. Deitel, P. J. (2015). C how to Program: With an Introduction to C++ (Chapter 3 and Chapter4).
Pearson Education India.

2. David Griffiths and Dawn Griffiths (2011). Head First C, O'Reilly Media, Inc

3. https://nptel.ac.in/courses/106104128

4. https://nptel.ac.in/courses/106105171 (lectures for week 3 and week 4)

Dynamic QR Code for Further Reading

The author has created supporting video lectures for each unit. Readers are
encouraged to watch the lectures to better understand the topics covered in
Unit III. However, it is advised to read the book units first and then see the
videos. The video lectures may not cover the whole unit but are provided as
supplementary material.

Computer Programming: Theory and Practicals | 109

UNIT SPECIFICS

Through this unit, we have discussed the following aspects:
● Use of different Arrays and Functions in C
● To learn Array Declaration and Initialization
● To learn Function Declaration in C
● Learn different ways of Function Calling in C
● Advantages of using Functions
● Practice problems on various Arrays and Functions in C

All these topics are discussed with detailed examples. Further, if needed, there is reference material
attached to each topic. To maintain the curiosity and interest of the readers, this unit also provides
video links via QR code to explain each topic. At the end of the unit, various exercises are provided
that include Multiple Choice Questions (MCQs), output-based questions, practical exercises, etc.
Moreover, a list of references and suggested readings are given at the end of the unit.

RATIONALE

In this unit, we introduce Array and Function in computer programming. An array is useful when
we want to solve computation problems that involve a large set of data. Moreover, functions are
used to bring modularity and reusability to the program. Therefore, these two concepts are
beneficial in writing computer programs for complex sets of problems. This unit begins with the
introduction of Arrays and Functions in C, followed by examples. Next, it discusses the Arrays,
Array Declaration, and Initialization of arrays in C, followed by various operations of arrays. Next,
it discusses memory organization and introduces the concept of pointers in C. It also discusses the
string as character arrays in C. Next, it starts with the Function, its advantages, and different types
of functions. It covers the syntax of various functions with demonstrative examples and benefits. A
brief introduction to the storage classes is also discussed in this unit.

4 Arrays and Functions in C

110 | Arrays and Functions in C

PRE-REQUISITES

Unit-I, II, and III

UNIT OUTCOMES

List of outcomes of this unit is as follows:

U4-O1: Describe the need for Array and Function in problem-solving using C

U4-O2: Describe the memory organization in C

U4-O3: Explain syntax and usage of Array C programming

U4-O4: Explain the syntax and usage of Function in C programming

U4-O5: Apply Array and function in problem-solving using C

Unit-1

Outco

mes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6

U4-O1 - 3 2 3 - -

U4-O2 1 3 2 2 - -

U4-O3 2 2 3 2 - 1

U4-O4 2 2 3 2 - 1

U4-O5 2 2 3 2 - 3

Computer Programming: Theory and Practicals | 111

4.1 Introduction

In the previous Units, we studied the various primitives in C programming, including Data types
(int, float, double, and char), types of instructions, and control statements. Throughout the book,
we considered data as a single element of one of these data types. In all the practical examples, we
take variables for holding input and output data. However, a software/program might work on a
large amount of data. Consider the following example.

Example. Consider a scenario where you want to develop a program to calculate the average
marks in a subject for 200 students in a class. One way is to define 200 variables of int (or double)
data type and then carry out 200 scanf() operations to store the inputted values in the variables
and then find out the average among these variables.

This can become more complicated when you want to do operations on a large number of elements,
let's say 100000. Declaring and handling variables for each data element would be very difficult.
 However, if you observe in the given an example, all the 200 values are of the same type and
have the same semantics (i.e., all values represent marks), thus it can be represented as a single
variable (let's say marks) that can hold 200 elements and some way to access individual marks
value. That is where an Array is helpful in programming. Therefore, in another way, we can store
the marks of 200 students in a single integer array, apply a loop to store all 200 values entered by
a user, and then compute the average.
 Which option do you think is better? The second option, which involves storing the same data
types in a single variable and later accessing them via an array index, is more practical. (we will
discuss it in the following section).

4.2. Array

An array is a group of contiguous memory locations that all have the same type. We provide the
name of the array and the position number of the specific element in the array to refer to a specific
location or element in the array.

Fig 4.1 Array Example

112 | Arrays and Functions in C

Fig.4.1 depicts an integer array called A, which consists of 11 elements. You can refer to any of
these elements by putting the array's name followed by the element's position number in square
brackets ([]). The first element in every array is the zeroth element (i.e., the one with position
number 0). Similar to other identifiers, an array name cannot start with a digit and can only contain
letters, numbers, and underscores.

4.2.1 Array Declaration and Initialization

In C language, the array is declared as follows.

data_type array_name[size];

Similar to any other variable declaration, we specify the type of data (int, char, float etc.)
and array_name (an identifier) and the size of the array (an integer constant) that specifies the
number of elements in the array. The name of array (i.e., array_name) should follow the valid
identifier name rule studied in Unit I. For example, ‘Marks’ is the variable name of size 10 having
a datatype double.

double Marks[10];

i.e., the given array can hold 10 mark values (may correspond to 10 students). Any individual mark
value can be accessed by providing an index number (starting from 0 to 9). We can initialize an
array by putting values one by one using an array index (rarely used).
Marks[0] = 40.5;

Marks[1] = 72.0;
..
..

Marks[10] = 90.5;

or an initializer list can be used with the array declaration to initialize the array elements. For
example,

double Marks[10] = {40.5, 72.0, 35.0, 66.5, 10.5, 55.5, 62.0,
87.0, 54.0, 90.5};

Note: If an initializer list is used to initialize the elements of an array then size from
declaration can be omitted. For example, the above declaration and initialization can be
written as:

Question 4.1 Why is the array index starts from 0? Why not 1?

Computer Programming: Theory and Practicals | 113

double Marks[] = {40. 5, 72.0, 35.0, 66.5, 10.5, 55.5, 62.0, 87.0, 54.0, 90.5};
In this case, the compiler identifies the size of an array by the size of the initializer list.

Scan QR
code for
Answer

Accessing an element in Array. An index number in between square brackets specifies a location
to access a particular element in the array. For example, if you want to access ‘72.0’ (second
element), then you can write the statement Marks[1] (index starts from 0 therefore, 72.0 is at first
position). Similarly, Marks[9] will return 90.5.

Note: In C programming, if you try to access elements outside the size of the array, the
compiler won’t give you an error; instead, you might get a garbage value. Therefore, it is the
responsibility of the programmer to check/use index numbers in Array carefully.

Runtime Array Initialization. The above-mentioned initialization can be termed compile-time
initialization. Whereas, if we want to initialize the array by taking input from the user, we can use
loops. A simple example is shown in Fig.4.2.

Fig 4.2 Runtime initialization of an array

Question 4.2 What would happen if we put less number of values in the initializer list
than the size of an array (case 1)? Similarly, if we give more values in the initializer list
than the size of an array (case 2)?

double Marks[10] = {40. 5, 72.0, 35.0, 66.5, 10.5, 55.5, 62.0}; //Case
1
double Marks[10] = {40. 5, 72.0, 35.0, 66.5, 10.5, 55.5, 62.0, 87.0,
54.0, 90.5, 40.5}; //Case 2

114 | Arrays and Functions in C

In the above example, line number 2 defines a constant for array size. Line number 4 declares an
array ‘marks’ of type double. A for loop (line number 5) is used to demonstrate the initialization
of the array.

Programming Tip. It is a good practice to define array size as a macro constant. Whenever a
programmer wants to change the size of an array, it has to change at only one place, and it will
be reflected throughout the program.

Memory allocation and address representation in an array. In unit I, we briefly discussed
memory structure in computers. Computer memory is split into tiny units called bytes. Each byte
has a unique address. Array stores in computer in a continuous manner. i.e., all the elements are
stored in continuous locations in the memory. For example, if the memory address of the first
element of an integer type array is 2000, then the next element will be stored at the location 2004
address (assuming the integer occupies 4 bytes), and so on. An example is shown in Fig 4.3.

Fig 4.3 Memory allocation and address representation in an array

Before discussing the further concepts using array and function. It is better to understand the
memory layout in the C programming language.

4.3 Memory Organization in C

As we already know, a computer program is stored in secondary storage and must be brought into
the primage storage (RAM) for its execution. Since RAM storage is limited, the programmer must
utilize the limited space efficiently. Knowing the memory layout in C helps programmers to decide
the amount of memory to be utilized by their computer program.

The memory layout in C contains five basic components: Text segment, Initialized data segment,
uninitialized data segment, Stack, and Heap. Each component stores a different part of the code
with its exclusive read and writes permissions. The diagram of the memory layout is shown in Fig.
4.4

Computer Programming: Theory and Practicals | 115

Fig 4.4 Memory layout

We’ll discuss each of the components in detail:

1. Text segment: This component stores the instructions of the binary file generated by compiling
a C program. It has read-only permission, preventing unintentional program alterations.

2. Initialized data segment: The initialized data segment, also known as the data segment, is a
portion of the computer's virtual memory space used by a C program to store the initialized
values (initiated in the program at the time of variable declaration) for all external, global,
static, and constant variables that were declared in the program (dicussed in Section
4.8). It has read-write permissions since the value of the variables can be changed during the
execution. Also, read-only permission for the constant variables since their value remains the
same throughout the execution.

3. Uninitialized data segment: This segment stores all the uninitialized global, local, and
external variables which were not initialized in the program. It initializes the variables to zero
and the pointer to null pointer. It is also known as the bss(block started by symbol) segment. It
has read-write permission.

116 | Arrays and Functions in C

Fig 4.5 Visualization and components of the stack

4. Stack: The stack segment is used for the dynamic memory allocation. It grows and shrinks in
the opposite direction of the Heap, as shown in Fig 4.5. The stack segment uses a stack data
structure to store the data, which follows the First In last Out (FILO) or Last In First Out (LIFO)
properties. The stack has a top pointer that always points to the top of the stack (points to the
recently added data). The top (pointer) is used to modify or access the stack's data. In stack, the
insertion of the data is known as the push operation, and the deletion of the data is known as the
pop operation. Both (push and pop) operations are performed from the top of the stack. In every
push operation, the top (pointer) will increase by 1, and then data will be put on the location
pointed by the top. In pop operation, first data will remove from the top of the stack, then the
top (pointer) will decrease by 1. Stack has one type of container known as the stack frame. The
stack uses this stack frame to store the value of the local variables, temporary variables, the
parameters passed to a function, and the return address (shown in Fig 4.5 (a)). At the time of the
push operation, the stack creates the stack frame and stores the respective data in it. Stack also
manages the order of the function call. That means if we have a series of the function calling
(function called inside the function), the function called at the last will be executed first (LIFO
behavior), shown in Fig 4.5.

Computer Programming: Theory and Practicals | 117

5. Heap: It is used for allocating the memory during the run time. The functions malloc(), calloc(),
and realloc() is used for allocating the memory in the heap segment. It grows and shrinks in the
opposite direction of the Stack.

4.4. Pointers

Pointers are the special types of variables used to store the data where the
pointer's data is an address of another variable. So, we can say that a pointer
is the type of the variable used to store another variable's address.

The variable name refers to the stored value in a memory, and the pointer refers to that memory's
address (the memory address where the variable's data is held). So we can say that the variable
directly points to the stored value, and the pointer indirectly indicates the variable's value.
Referencing the variable's value using the pointer is known as indirection. Fig 4.6 shows the
visualization of the variable and pointer.

Fig 4.6 Visualization of the variable and pointer

As we know, the variable should be defined before use. The pointer is also a variable, so in this
sense, the pointer must be defined before use.

Syntax to define the pointer

data_type *pointer_name;

Before using the pointer in C, we must understand the two operators:

1. ampersand (&) operator: The ampersand (&) operator is used to get the address of the variable.
This address is used to access the data (value) of the variable. For example, suppose we have

 Scan for further

reading

118 | Arrays and Functions in C

a variable var and varPtr is a pointer. So, &var gives the address of the var variable, and it
can be stored in the varPtr (shown below).

varPtr= &var;

2. asterisk (*) operator: The asterisk operator is used for two purposes.

To declare a pointer: The first use of the asterisk operator is to declare the pointer. During the
pointer variable declaration, the asterisk operator is written before the pointer's name (as shown in
the syntax to define the pointer).

To access the value of the stored address: The second use of the asterisk operator is to access the
value of the stored address. As we know, the pointer is used to store the address of the variable. So
the name of the pointer always pointing the address of the variable. To access the variable's value,
programmers need to use the asterisk operator, which returns the value of the corresponding
address. It is also called dereferencing.

Fig 4.7 Demonstration of the pointer

In the above example (Fig 4.7), line 5 varPtr pointer is declared using the asterisk. In line 6, the
ampersand operator is used to get the address of the var and store it in the varPtr. Lines 7, 8, 9,
and 10 show the results with respect to the variable and the pointer. Here we can see that varPtr
and &var print the same values, and *varPtr and var print the same values.

Computer Programming: Theory and Practicals | 119

Output

Value of the variable: 21

Address of the variable: 1723142460

Value of the pointer: 1723142460

After dereferencing: 21

4.4.1 Arithmetic operation in pointer

As we know that the pointer is used to store the address; that is why minimal arithmetic operations
can be performed on pointers. In a pointer, valid arithmetic operations are:

1. Increment and decrement of a pointer: The pointer supports the increment and decrement
operators. The increment operator sends the pointer to the next address by adding the appropriate
value (the data type size) instead of 1. Similarly, the decrement operator sends the pointer to the
previous address by subtracting the appropriate value (the data type size) instead of 1. The
demonstration is shown in Fig.4.8.

2. Addition and subtraction of an integer in a pointer: The addition and subtraction of an integer
in a pointer also work like an increment or decrement operation shown in Fig.4.8.

For example, suppose we add 4 to the pointer; that means 4*(sizeof(datatype)) will be added to
the address, and the pointer will shift to the fourth address from the current. Similarly, if we subtract
4 from the pointer, then the pointer will shift back to the 4th address.

Fig 4.8 Demonstration of the arithmetic operations in pointer

120 | Arrays and Functions in C

Output

Value of the pointer: 1934329196
After increment: 1934329200
After adding 2: 1934329208
After decrement: 1934329204
After subtracting 2: 1934329196

3. Subtraction between two pointers: Two pointers can be subtracted from each other if their
types are similar.

4. Comparison of the pointers: Two pointers can be compared if their types are similar.

4.4.2 Types of pointers

In C programming, there are three types of pointers.

Void pointer: A pointer with no data type is known as a void pointer. The void pointer is declared
by using the void data type. A void pointer is also known as a general-purpose pointer. This pointer
can point to some memory location which means it can point to the address of the variable. In the
C programming language, malloc() and calloc() return the void type address.

For example, void *varPtr1;

Null Pointer: This pointer can be created by assigning the Null (zero) value during the declaration
of the pointer.

For example, int *varPtr2= NULL;

Wild pointer: A pointer with no value is known as a wild pointer. The wild pointer can be
dangerous for the program. It can cause the crash of the program. The best practice is to initialize
the pointer while declared.

For example, int *varPtr3; // without initializing any address or Null value

Computer Programming: Theory and Practicals | 121

Fig 4.9 Demonstration of different types of pointers

In the above example (Fig 4.9), void, null and wild pointers are declared in lines 4, 5, and 6,
respectively. In the output, we can see that the void pointer has located some memory by default.
In line 9, we try to dereference the wild pointer, but it gives the segment fault because it did not
point to any memory location.

Output

void type pointer: 328965584

Null pointer: 0

Segmentation fault

4.5 String as Array of characters

A string is a sequence of characters ended by a null character ‘\0’. As we have learned in Unit 1,
the C language does not allow String data type. The C language supports String as a 1-D
(dimensional) array of characters. Now, we will see how to declare and initialize strings. The basic
syntax is as follows.

char s_nme[size];

where s_nme is the string name and size represents the string size. For example, the bird is the
name of the string, which contains at most 10 characters, including a null character.

char bird[8];

122 | Arrays and Functions in C

4.5.1 Initialization of a String

There basic syntax of initializing a string at the compile time is as follows:

char bird[]= “PEACOCK”;

This initializes the string variable bird to “Peacock.” It creates an array of characters of size 8
containing ‘P’, ‘E’, ‘A’, ‘C’, ‘O’, ‘C’, ‘K’, and ‘\0’. The above initialization can
also be written as:

char bird[]= {‘P’, ‘E’, ‘A’, ‘C’, ‘O’, ‘C’, ‘K’, ‘\0’}; \\ null character is
explicitly mentioned

Here, the size of a string bird can be identified by the compiler depending on the characters
present in the initializer's list. We have to explicitly mention the null character '\0' during the
initialization. In contrast, the compiler automatically appends a null character to the end when the
string is initialized within double quotation marks.

4.5.2 Reading a String from User

When the user initializes the string at run time, the scanf function is used to take the input from
the user. The syntax is given below.

scanf(“%s”,array_name);

Here, the ‘%s’ format specifier is used for strings, and ‘&’ is not appended with the array_name
as the array’s name represent the base address. The example is given below:

scanf(“%s”, bird);

A C program is shown in Fig.4.10 that demonstrates to read a string from the user:

Computer Programming: Theory and Practicals | 123

Fig 4.10 Demonstration to read a string from the user

Output (Assuming input is PEACOCK)

Enter the string PEACOCK

The value of a string is PEACOCK

As we all know, scanf() reads the input until it encounters whitespaces. Sentences consist of
many whitespaces. So, another function gets(), is available in the stdio.h library is used for
reading a sentence as input. It treats whitespaces as a part of a string. Similarly, puts() is used to
display a sentence.

4.6 Multidimensional Array

A multidimensional array is a collection of arrays used to hold homogenous. The simplest form of
a multidimensional array is a 2-D array. We need to specify two dimensions to recognize a specific
element in a table. The first dimension specifies the element's row, and the second represents the
element's column (by default). The syntax for declaring the 2-D array is shown below:

data_type arr_name[size_1][size_2];

For example,

int marks[3][4];

Question 4.4 What if a user wants to enter the sentence “Peacock is a bird”?

124 | Arrays and Functions in C

marks is a 2-D array of type float. The number of elements an array holds is calculated by
multiplying all the dimensions of an array. The marks array holds 12 elements (3*4). The
representation of the marks array is shown in Fig 4.11.

Fig 4.11 Representation of 2-Dimensional Array (marks)

To access an element of a marks array, we need to specify the row number followed by a column
number. For example, marks[2][3]=65, marks[0][1]=15, marks[1][2]=40

Note: For creating an n-D array, we must specify n-subscript (dimensions) while declaring an
array. For example, float marks[size_1][size_2]...[size_n];

An example to demonstrate 2-D array is shown in Fig 4.12.

Computer Programming: Theory and Practicals | 125

Fig 4.12 Different ways to initialize a 2-D array

Output

The elements of marks1 array are:
10
15
20
25
30
35
The elements of marks2 array are:

126 | Arrays and Functions in C

10
15
0
20
25
0
Enter the values for marks[0][0] 1
Enter the values for marks[0][1] 2
Enter the values for marks[0][2] 3
Enter the values for marks[1][0] 4
Enter the values for marks[1][1] 5
Enter the values for marks[1][2] 6
The elements of marks3 array are:
1
2
3
4
5
6

The tabular representation of an array is for the programmer's simplicity (as shown in Fig 4.11).
However, the arrays are stored in row-major or column-major order. In row-major order, the
elements are arranged linearly row-wise, whereas, in column-major order, the elements are
arranged linearly column-wise. Both representations are shown in Fig 4.13:

Fig 4.13 2-Dimensional array (marks) representation in a row and column-major order

Question 4.5 How multidimensional arrays are stored in memory?

Computer Programming: Theory and Practicals | 127

4.7 Function

We, humans, depend on many people, knowingly or unknowingly, for many different things.
Despite being intelligent, we cannot complete all life's tasks independently. For example, A person
may call a mechanic to repair his car, employ a gardener to prune his lawn, and depend on a grocery
store to deliver foodstuff monthly. Similarly, A computer program (other than the simple programs
studied in previous chapters) faces an analogous situation; it cannot complete every task by itself.
Instead, it requires program-like entities known as functions to complete the task. This section
discusses the use of functions in a programming language.

A function can be defined as a set of statements that collectively performs some task. It takes
inputs, performs the tasks, and returns the results. A function must be declared first before calling
in the program. We can call the function several times. As we have already seen, using a function
is similar to employing a person to carry out an assigned task. Getting along with the person is
sometimes easy and challenging. For example, consider a routine operation you conduct, such as
repairing your motorcycle every two months in the same manner as before. When the time comes,
you visit the service center and request its service. The individual does not need to provide
instructions because the mechanic is experienced in his work. When the task is done, you do not
need to be informed. You expect that the mechanic will perform the standard maintenance on the
bike, and that will be all. A simple C function works identically as the mechanic. A function is also
known as a method, procedure, or routine.

4.7.1 Advantages of using Functions

The advantages of using Functions are as follows:
1. Code reusability (Avoids repetition of codes)
2. Increases program readability
3. Divides large complex problems into simple ones.
4. Reduces the chance of errors.

4.7.2 Types of functions

Fig 4.14 Types of function

128 | Arrays and Functions in C

The two kinds of functions provided in C programming are user-defined and library functions
(shown in Fig.4.14). Library functions are built-in functions that perform a specific task and are
present in standard libraries. The header files are used to include these standard libraries.
Programmers are not required to write library functions. A C program uses a variety of built-in
functions that are present in the standard C library. For example, printf() and scanf()are
defined in the stdio.h library, while cbrt() for computing the cube of a number and pow() for
the computing power of a number is defined in math.h library. User-defined functions are
required to be written by the programmer while creating the code. These functions need to be
declared and defined by the programmer itself.

4.7.3 Function definition, declaration, and calling

Now, we will learn how to write custom (user-defined) functions. Before writing a custom function,
we must know the answers to three questions. 1. How to define a function? 2. How is a function
declared? 3. How is a function called? We will start with the function definition.

 Defining a function

The function definition defines the actual body of the function. A function comprises a header and
body. The first line of the function definition is called the function header, which comprises three
parts: return data type, function name, and argument list. The syntax is shown below.

return_data_type fun_name(arg_list) //function header

{

 set of statements; // function body

}

● return_data_type - It defines the data types of value that a function returns after executing
its function body. The default return type is int. It is not necessary for a function to always
return a value. Sometimes, it returns nothing; in such cases, the void return type is used.

● fun_name - It specifies the function name. It should be a valid identifier.
● arg_list - It is a list of arguments separated by commas received when the function is

called. When a function is called, the value to the arguments is passed. The argument list
is void if no value is passed through the function.

● function_body - It comprises a set of statements that describe the function's functionality.

The control can be passed to the called function in various ways (back to the place from where the
function was called). When the function returns nothing, the control is transferred when the right
curly brace of the function is encountered, or it can be accomplished by executing the following
statement.

Computer Programming: Theory and Practicals | 129

return;

When the function returns a value, the statement

return expression;

is used to return the value to the point from which it has been invoked. Here, an expression could
be a value or an expression. For example, a function finds the smallest number among two and
returns the smallest number.

int smallest(int var1 , int var2) //function definition

{

 int small;

 if(var1 > var2)

 small = var2;

 else

 small = var1;

 return small;

}

Here, in the above example, a function smallest is defined, which finds the smallest number among
the two numbers. This function takes two arguments of integer type and returns an integer value
after executing the function’s body. The variable declared inside the function’s body, that is, small
is the local variable. It is identified within the function smallest in which it is defined.

Function Declaration

It is also known as a function prototype. It informs the compiler of the type of data the function
returns, the number and types of arguments the function receives, and the order in which the
arguments appear. The compiler ensures the correctness of the function call by checking the
function prototype. The syntax is as follows:

return_data_type function_name(argument_list);

For example, the function declaration of the smallest function is shown below.

130 | Arrays and Functions in C

int smallest (int, int); // function prototype

The function declaration of the smallest function states that this function takes two integer-type
arguments as an input and returns an integer value as an output. We can also give variable names
in the argument list shown in Fig 4.15. It should be noted that the first line of the function definition
and declaration is the same. A compilation error occurs when they both differ.

Note: The function declaration results in a syntax error if the semicolon is left off at the end of
the function declaration.

Function Calling

We have already seen how to declare and define a function. How can we use the defined function
in our C program to perform a specific task? To use it, we need to call the function in the program.
The program's control is transferred to the function when a function is called. It performs the task
defined in the function's body. After performing the task, it returns the results to the caller function
from where it has been called. The syntax is as follows:

func_name(argumnent_lst);

We need to write the function’s name along with the list of arguments. If it returns a value, then a
variable should be there to store it. For example,

small_number = smallest(a,b); //function call

// small_number stores the result returned by the smallest function.

Here, the function named smallest is called, which takes three integer arguments as input and
returns the integer argument, which will be stored in the variable small_number.

The complete program demonstrates the functionality of a function shown in Fig 4.15.

Computer Programming: Theory and Practicals | 131

Fig 4.15 Demonstration of working of a smallest function

Output

Enter two integer values:

23

34

The smallest number is 23

*Note: It is assumed that the user enters 23, and 34 as an input

Consider another example that prints cubes of a number from 1 to 5 using a function cube shown
in Fig.4.16.

132 | Arrays and Functions in C

Fig 4.16 Demonstration of working of a cube function

Output

1
8
27
64
125

4.7.4 Function Calling

C programming provides two ways: call by value and call by reference of function calling. Before
going into details, we must know the actual and formal arguments. The arguments which are
passed during the function calling are known as actual arguments. The calling function defines
these arguments. The actual arguments do not need to have the data type specified. For example,

small_number = smallest(a,b); // Here, a & b are the actual arguments.

The arguments that are used in the argument_list of the function definition are known as formal
arguments. They are defined in the function definition. The data type must be specified in the
formal arguments.

Computer Programming: Theory and Practicals | 133

int smallest (int var1, int var2) //var1 and var2 are the formal arguments

{

 // body of the smallest function

}

Call by value

The actual arguments value gets copied into the formal ones in case of call by value. First, copy of
actual argument is made, and then it gets passed to the formal arguments in the called function. If
the function made any changes to the formal arguments (copied one), it does not reflect the changes
back to the actual arguments (present in the caller function). It is used when the invoked function
does not intend to alter the value of the caller function. The example is shown in Fig 4.17.

Fig 4.17 Demonstration of call by value method of function calling

134 | Arrays and Functions in C

Output:

Enter the two numbers

34

45

The values of var1 and var2 before swapping are var1=34 var2=45

The values of var1 and var2 after swapping are var1=45 var2=34

The values of var1 and var2 after swapping (in main function) are var1=34
var2=45

*Note: It is assumed that the user enters 34, 45 as an input

In the above example, we created a swap function to swap two integer numbers using the call-by-
value. The function is called from the main function. The actual arguments were copied and passed
to the formal arguments. The changes were made in the formal arguments, not the actual ones. We
can see that the values were swapped inside the function. However, the changes (swapped values)
were not reflected in the main function. The values inside the main function before and after
swapping are the same.

Call by Reference

In this, the actual arguments' address is passed to the formal arguments. The address of the actual
argument is copied and passed to the formal arguments. The function performs the task with the
help of the formal arguments only since the actual and formal arguments both point to the same
memory locations. Therefore, any changes performed during a function call will be reflected in the
actual arguments of the called function. The call-by-reference method can manipulate the actual
arguments (original value). The example is shown in Fig. 4.18.

Computer Programming: Theory and Practicals | 135

Fig 4.18 Demonstration of call by reference method of function calling

Output:

Enter the two numbers

34

45

The values of var1 and var2 before swapping are var1=34 var2=45

The values of var1 and var2 after swapping are var1=45 var2=34

The values of var1 and var2 after swapping (in main function) are var1=45
var2=34

*Note: It is assumed that the user enters 34, 45 as an input

In the above example, we created a swap function to swap two integer numbers using the call-by-
reference. The actual arguments address was copied and carried to the formal arguments. The actual
and formal argument both points to a similar memory location. When the function performs the
task of swapping, the changes are directly made to the actual arguments.

136 | Arrays and Functions in C

Another example of function

Here, we will see one example of calculating the length of the hypotenuse of a right-angled triangle
by creating a function hypotenuse_cal which, takes the two sides of a triangle as input and
returns the length of the hypotenuse as output. The two arguments (two sides) and the hypotenuse
length should be double-type. The program performs the calculation for three right-angled
triangles. The program is shown in Fig. 4.19.

Fig 4.19 Program to calculate the length of the hypotenuse of a right-angled triangle

Output:

Enter the two sides
23.2
34.44
The hypotenuse is 41.525337
Enter the two sides
45.56
78.6
The hypotenuse is 90.849731
Enter the two sides
87.6
89.5
The hypotenuse is 125.235818

Computer Programming: Theory and Practicals | 137

*Note: It is assumed that the user enters 23.2, 34.44, 45.56, 78.6, 87.6, 89.5 as an input

If the function is already defined before it is called, then it is not necessary to provide the
declaration. The function should be defined before the function call. If the programmer tries to use
the function before declaring it, it will result in a compile-time error.

An example is shown in Fig. 4.20 shows that the function can be defined without declaring it.

Fig 4.20 Program to calculate the length of the hypotenuse of a right-angled triangle

4.7.5 Passing array to Functions

This section will show how arrays can be passed through functions. Sometimes, passing more than
one variable of the same type is required for a function. For instance, suppose a function that
arranges the ten numbers in ascending order. This function requires passing ten actual parameters
through the function call. This would be cumbersome to pass ten different variables through a
function. A different approach is to define an array and pass it through the function. Passing an
array resolves the complexity; now, the function can be used for any number of variables.

Question 4.6 Can we define the function without declaring it?

138 | Arrays and Functions in C

As we already know, the name of an array represents the base address. We only need to pass the
array name to the function. The syntax is given below.

function_name(array_name);

Here, array_name is the name of the array and function_name is the name of the function. For
example,

cal_average(arr);

Now, we must know how to define a function that receives an array as an argument. There are three
ways to define a function that receives an array as an argument. The syntax of all three ways is
given below.

1. We can see the use of subscript notation [] in the function definition. It tells the compiler that a
one-dimensional array is passed through the function. For example,

return_type function_name(data_type array_name[]){

…

}

For example,

float cal_average(float arr[]){

...

}

2. The second way is to define the size of the array in the subscript notation []. The syntax is as
follows.

return_type function_name(data_type array_name[size]){

...

}

 For example,

float cal_average(float arr[10]){

...

}

Computer Programming: Theory and Practicals | 139

3. The third way is to use the pointer variable to receive the address of an array.

return_type function_name(data_type *arrayname){

...

}

 For example,

float cal_average(float *arr)

An example is shown in Fig. 4.21. A function cal_average() is declared and defined, which
computes the average of all the numbers of an array. This function takes an array as an argument
and returns the average value.

Fig 4.21 Demonstration of passing an array to functions

Output

The average is 51.521996

140 | Arrays and Functions in C

Advantages of using Functions
1. There are many advantages of using functions in a computer program.
2. Code reusability (Avoids repetition of codes)
3. Increases program readability
4. Divides large complex problems into simple ones.
5. Reduces the chance of errors.

4.8 Storage classes

Storage classes are used to define the scope of the variables and functions. In the C program, the
storage classes control the life of the variables/ functions in the memory and visibilities. The syntax
is given below.

storage_class var_data_type var_name;

In the C programming language has four storage classes:
● auto
● extern
● static
● register

auto: Any variable defined inside the function or block is declared by default as an auto-storage
class. It can also be defined using the auto keyword. In this storage class, variables can be visible
or accessible only within the function or block. The auto variable cannot be accessed outside the
function or the block. The auto-storage variable can be accessed inside the nested block (if the
variable is defined inside the outer block, it can be accessed inside the inner block, not vice versa).

The auto variables are stored inside the stack memory, and the life of the variables ends outside the
block. The default value of the auto storage variable is garbage.

Computer Programming: Theory and Practicals | 141

Fig.4.22 Demonstration of use of the auto variable

In the above example (Fig.4.22), var1 and var2 are defined as auto variables in lines 4 and 5,
respectively. In line 4, var1 is defined using the auto keyword, and in line 5, var2 define as an
auto variable by default. As we know, the visibility of the auto variables has within the block, so
they cannot be accessed outside the functionTo_auto function.

Output

Auto Storage Class demonstrated

The value of var1: 32 and var2: 32765

extern: External variables are defined using the extern keyword. It is also a global variable that
can be used or modified inside the whole program, and the extern variable's life ends after the
complete program's execution.

The external variable can be declared multiple times but can be defined only once. We can declare
a function as an extern, but as we know, the functions are already accessible from the whole
program, so if we declare them as an extern, then it increases the redundancy only.

142 | Arrays and Functions in C

Fig 4.23 Demonstration of the use of extern variable

In the above example (Fig 4.23), var1 and var2 are the external variables that are accessible from
anywhere during the program's execution. These variables are declared in lines 2 and 7,
respectively.

Output

The auto variable var3 : 28
The extern variables var1 and var2 : 21,12
The updated extern variable var1 : 25

static: The static storage class is used to declare a static variable. The variable is declared static
using the static keyword. A static variable preserves the information throughout the program's
execution, even if it is out of scope. So the static variable stored the value which is used last in the
scope. The static variables are initialized only once and exist till the program execution is
completed.

The static variable is stored in the data segment memory and, by default, initialized by 0.

Computer Programming: Theory and Practicals | 143

Fig.4.24 Demonstration of the use of static variable

In the above example (Fig 4.24), in the countFunc function varcount variable is declared static
(in line 12). Here we called the countFunc function in lines 4 and 5, respectively. In every call,
the function will execute freshly, and the value of the varcount variable should be 0 (reset), but
this has not happened. Because as we know, varcount is a static function, so it will get memory
only once, and re-initialization will not be done. So, the value updated in the previous function call
will carry forward for the subsequent function call, and we will get output 1 2 instead of the 1 1.

Output

1
2

register The storage class register has properties similar to an auto variable. There is only one
difference: if the register is available, then the variable declared using the register keyword uses
the register for storage. The benefit of this is that the program’s execution will be fast. So due to
this property, the most frequently used variable is declared as a register variable so that the
program's execution will be quick. If the register is unavailable, then the variable only gets the
memory.

144 | Arrays and Functions in C

Fig 4.25 Demonstration of use of the register variable

In the above example (Fig 4.25), var1 and var2 are declared as register variables in lines 4 and 5,
respectively.

Output

The register variable var1: H

The sum of auto and register variable: 94

UNIT SUMMARY

Introduction
 Array in C is a type of data structure that holds elements of the identical data type
 Array: An array is a group of contiguous memory locations that all have the same type.

o Accessing an element in Array. A particular element in the array can be
accessed by using an index number in between square brackets.

o Run time Array Initialization, Using runtime initialization user can enter
values throughout different runs of program.

Memory Organization in C
 Computer memory is split into tiny units called bytes. Each byte has a unique address.
 Storage classes are used to define the scope of the variables and functions.

o Text segment: This component stores the instructions of the binary file
generated by compiling a C program. It has read-only permission, preventing
unintentional program alterations.

o Initialized data segment: The initialized data segment, also known as the data
segment.

o Uninitialized data segment: This segment stores all the uninitialized global,
local, and external variables which were not initialized in the program.

o Stack: The stack segment is used for the dynamic memory allocation.
o Heap: It is used for allocating the memory during the run time.

Pointers
 The pointer is the most powerful feature of the C language. Pointer provides the luxury

to create or modify the dynamic data structure, i.e., stack, queue, linked list, and trees.
o ampersand (&) operator: The ampersand (&) operator is used to get the

address of the variable.
o asterisk (*) operator: The asterisk operator is used for two purposes, to

declare a pointer and access the value of the stored address
o Subtraction between two pointers: Two pointers can be subtracted from each

other if their types are similar.

Computer Programming: Theory and Practicals | 145

o Comparison of the pointers: Two pointers can be compared if their types are
similar.

String as Array of characters
 String in C are defined as array of characters.
 String can be initialized in two ways: 1) char Str[10] = “hello”; or char Str[10] =

{‘h’, ‘e’, ‘l’, ‘l’, o, ‘\0’}. In second way, an extra special character (null character)
needs to be specified explicitly.

 There is specific library call string.h provides various functions to manipulate the
strings.

Multidimensional Array
 A multi-dimensional array is a collection of arrays used to hold homogenous data in

tabular form (rows and columns).

Functions
 A function can be defined as a set of statements that collectively performs some task. It

takes inputs, performs the tasks, and outputs the results.
o It provides Code reusability (Avoids repetition of codes)
o Increases program readability
o It divides significant complex problems into simple ones.
o It reduces the chance of errors.

 Defining a function. The function definition provides the actual body of the function.
A function consists of a function header and a function body.

o return_type, It specifies the data types of value that a function returns after
executing its function body.

o function_name, It specifies the name of the function. It should be a valid
identifier.

o argument_list, It is a comma-separated list of arguments. It specifies the
arguments received by a function when it is invoked.

o function_body, the function’s body consists of a set of statements that defines
the functionality of the function.

 Function Calling. When a program calls a function, the program's control is
transferred to the called function. The called function performs the task defined in its
body.

o Call by value. When function called then the value of the actual arguments
gets copied into the formal arguments. First, the copy of the actual argument
is made, and then it gets passed to the formal arguments in the called function.

o Call by Reference. In this case, the actual arguments' address is passed to the
formal arguments. The address of the actual argument is copied and passed to
the formal arguments.

146 | Arrays and Functions in C

Storage classes

 Storage classes are used to define the scope of the variables and functions. In the C
program, the storage classes control the life of the variables/ functions in the memory
and visibilities.

o auto: Any variable defined inside the function or block is declared by default
as an auto-storage class.

o extern: External variables are defined using the extern keyword. It is also a
global variable that can be used or modified inside the whole program.

o static: The static storage class is used to declare a static variable.
o register: The storage class register has properties similar to an auto variable.

EXERCISES

Multiple Choice Questions
1. If the function return type is not mentioned in the function definition then what would be the

default one?
a. int
b. float
c. double
d. void

2. Which is not a valid statement (ar1, ar2, and ar3 are integer arrays)?

 a. ar1 = ar2;

 b. ar[] = {5,6,3,7};

 c. ar[5] = {5,8.3,5,2};

 d. All of the above

3. Which is the correct way to initialize an array in C programming language?

 a. int ar() = {6,5,4,3,2,1};

 b. int ar[6] = {6,5,4,3,2,1};

 c. int ar{6} = {6,5,4,3,2,1};

 d. int ar{} = {6,5,4,3,2,1};

Computer Programming: Theory and Practicals | 147

4. An index of an array starts with

 a. 0

 b. 1

 c. Depends on compiler

 d. None of the above

5. The output of the code snippet is:

 int main(){

 int ar[8] ={5,6,7,8,9};

 printf(“%d”, ar[5]);

 return 0;

 }
a. 9
b. 0
c. Garbage value
d. None of these

Answer
1. a 2. a 3. b 4. a 5. b

Output-based Questions

What would be the output of the following programs? (Assume stdio.h library is included in each
program)

A. void compute(int , int);

int main(){

 char var1 =6, var2 = ‘A’;

 compute(var1, var2);

 return 0;

}

 void compute(int var1, int var2)

{

 printf(“%d %d”,var1, var2);

}

B. int main(){

 int var1;

 for (var1=0;var1<3;var1++)

{

 int var1 =11;

 printf(“%d”, var1);

 var1++;

}

 return 0; }

148 | Arrays and Functions in C

C. int main(){

 int v;

 char c[] = “Computer
Programming”;

 for(v = 0; c[v]!=`\0';++v) {

 if((v%2)==0)

 printf(“%c”,c[i]); }

 return 0;

}

D. int main() {

 int var1;

 int bg[5] = {1,2,3,4,5};

 bg[1] = ++bg[1];

 var1 =bg[1]++;

 bg[1] = bg[var1++];

 printf("%d,%d", var1,bg[1]);

 return 0;

 }

E. int main() {

 int bg[] =
{1,2,3,4,5,6};

 int var1, var2,var3;

 var2 = ++bg[2];

 var3 = bg[1]++;

 var1 = bg[var2++];
printf("var1=%d,var2=%d,var3=%d
",var1,var2,var3);

 return 0; }

F. int main() {

 int var1, ar[4] = {4,5,6,7}, r;

 r = ar[0];

 for(var1=1;var1<4;var1++){

 if(r>ar[var1])

 continue;

 r = ar[var1]; }

 printf("%d",r);

 return 0; }

G. int main() {

 int *p, a=100;

 p = &100;

 printf("%d",*p);

 return 0;

}

H. int main() {

 int var1 = bg(11);

printf("%d",--var1);

return 0; }

int bg(int var1){

 return (var1++);

}

Output:

A. 6, 65 B. 11 11 11 C. Cmue Pormig D. 4,4 E. var1=5, var2=5,var3=2 F. 7

G. Compilation Error H. 10

Computer Programming: Theory and Practicals | 149

Short and Long Answer Type Questions

Q. 1 Fill in the blanks
1. When an array is declared using three subscripts is known as _________ array.
2. Can an array store different types of values? (True/Flase)
3. An array's _______ is the number used to refer to a specific element.
4. When a function returns nothing then, ______ keyword is used.
5. The ______ statement passes the value of an expression from where it has been invoked.

 Answer

 1. Three-Dimensional 2. False 3. index 4. void 5. return

Q2. Write statements to perform the tasks given below:
a) Print the sixth element of the character array ‘c’.

b) Initialize the 5 elements of an integer array ‘g’ to 1.

c) Adding 2 to each of the values of a ‘g’ array.

Answer
a) printf(“The sixth element is %c”, c[5]);
b) int g[5] ={1,1,1,1,1}; or int g[] = {1,1,1,1,1};
c) for(int i=0; i<5;i++)

{

 g[i] = g[i] +2;

}

Q3. Write a statement to perform the tasks given below: (Variables var1 and var2 are of float types
and var1 is initialized to 12.6.

a) Declaring a pointer fp of float type.
b) Assigning the address of var1 to fp.
c) Printing the value pointed by the pointer fp.
d) Assigning the address of the var2 to the fp pointer.
e) Printing the value pointed by the pointer fp.
f) Printing the address stored in the pointer variable.

Answer
a) Float *fp; b) fp =&var1 c) printf(“The value pointed by the Pointer fp is %f”,

*fp);

150 | Arrays and Functions in C

 d) fp = &var2 e) printf(“The value pointed by the Pointer fp is %f”, *fp);

 f) printf(“The address stored in the pointer variable is %p”, fp);

Q4. Write the function declaration:
a) Function greatest takes three integer arguments and returns an integer argument.
b) Function intToDouble takes one integer argument and returns a double (high-precision)

number.
c) Function display takes one integer and one floating-point value and returns nothing.

(This function is used for displaying the information)

PRACTICAL

Q1. Write a C program using functions to perform the following tasks:
a) To convert the binary equivalent of a decimal number
b) To find the power of a number.
c) To reverse the string inputted by the user.

Q2. Write a program using functions to show a given number as the sum of two prime numbers.
For example, 16 can be shown as 16 = 5 +11 and 16 = 3 +13.

Q3. Write a program to perform the following task:
a) Addition of two square matrices
b) Subtraction of two square matrices
c) Multiplication of two square matrices
d) Determinant of a square matrix.
e) Inverse of a square matrice (if determinant is non zero)

Q4. Write a program to take an array of 20 integers as input from the user and create three functions
for calculating mean, median, and mode.

KNOW MORE

String Manipulation Functions

C programming language provides a large number of functions for managing strings. These
functions are defined in the standard header file string.h. These functions are useful for
manipulating strings. Some of these functions are given below.

Computer Programming: Theory and Practicals | 151

strcpy(str1,str2) It copies a string str2 into string str1 and returns the resultant
string in str1.

strcat(str1,str2) It concatenates a string str1 to string str2 and stores the result
in the string str1. The size of the str1 should be large enough
to store the resultant string; otherwise, it would result in a
segmentation fault.

strlen(str1) It computes the length of the string str1. This function does not
include the null character ‘\0’ while computing the length.

strcmp(str1,str2) It compares the two strings. This function returns

zero: if the two strings str1 and str2 are equal;

positive integer: if the first non-matching character in the str1
is having a greater ASCII value than that of str2.

negative integer: if the first non-matching character in the str1
is having a lower ASCII value than that of str2.

strrev(str1) It reverse the string str1.

strlwr(str1) It changes the string str1 to lower case.

strupr(str1) It changes the string str1 to upper case.

REFERENCES AND SUGGESTED READINGS

1. Deitel, P. J. (2015). C how to Program: With an Introduction to C++ (Chapter 5, 6 and 7).
Pearson Education India.

2. David Griffiths and Dawn Griffiths (2011). Head First C, O'Reilly Media, Inc

3. https://nptel.ac.in/courses/106104128

4. https://archive.nptel.ac.in/courses/106/105/106105171/ (week 6, 7 and 8)

152 | Arrays and Functions in C

Dynamic QR Code for Further Reading

The author has created supporting video lectures for each unit. Readers are
encouraged to watch the lectures to better understand the topics covered in Unit
IV. However, it is advised to read the book units first and then see the videos. The
video lectures may not cover the whole unit but are provided as supplementary
material.

Computer Programming: Theory and Practicals | 153

d

UNIT SPECIFICS

Through this unit we have discussed the following aspects:
● Introductions to recursions
● Representation of recursions in C programming
● Types of recursions
● Working on the recursive function
● Recursive Solutions
● Various examples of different recursions
● Practice problems on recursions

All these topics are discussed with detailed examples. Further, if needed, there is reference material
attached to each topic. To maintain the curiosity and interest of the readers, this unit also provides
video links via QR code to explain each topic. At the end of the unit, various exercises are provided
that include Multiple Choice Questions (MCQs), output-based questions, practical exercises, etc.
Moreover, a list of references and suggested readings are given at the end of the unit.

RATIONALE

In this unit, we extend the discussion of function introduced in Unit IV. It begins with introducing
recursion in C programming, followed by an example. The representations of the base and
recursive case are explained. Next, we discuss the type of recursion, direct recursion and indirect
recursion. We also discuss different types of direct and indirect recursion with examples. Next, we
discuss the possible solutions of recursion with demonstrative C programs. This unit has not only
a brief introduction to recursion but also provides direction to the effective use of recursion in
various types of problems. The given examples offer insights into the solution to different real-
world computation problems. In summary, this unit introduces a new approach to solve complex
problems efficiently.

PRE-REQUISITES

Basic Mathematics, Unit-I, II, III and IV

5 Recursion and Recursive
Solutions

154 | Recursion and Recursive Solutions

UNIT OUTCOMES

List of outcomes of this unit is as follows:
U5-O1: Describe the need for recursive function in problem-solving using C
U5-O2: Describe types of recursive functions
U5-O3: Explain the uses of recursion through example.
U5-O4: Apply recursive function in problem-solving using C

Unit-1

Outcomes

EXPECTED MAPPING WITH COURSE OUTCOMES
(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)

CO-1 CO-2 CO-3 CO-4 CO-5 CO-6

U5-O1 - 3 2 3 - -

U5-O2 1 3 2 2 - -

U5-O3 2 2 3 2 - 1

U5-O4 2 2 3 2 - 3

Computer Programming: Theory and Practicals | 155

5.1 Introduction

When a function calls itself (directly or indirectly) then it is known as the recursion in computer
programming. Recursion is a technique that breaks complex problems into small sub problems.
The dividing of the problem depends upon the base condition. The base condition is the scenario
where we stop dividing the problems and return the results. So, in a recursive call problem, it is
divided into sub problems until the base condition will not meet.

z

Example. Suppose you are ready to go office and look for the car key in a key stand in the
morning, but you don't find it. At the same time, your child comes out and says I hid the car key
in a box. You are getting late and want a car key.
 You immediately open the box, but you find one more box inside the box. The child says, the
box has a box, and he does not know which box has a key. So now you have to develop an
excellent algorithm to find the key.
 There are two ways to create an algorithm for the above problem: iterative and recursive. Let
us see both ways using the flow chart.

Fig 5.1 Iterative and Recursive way to find the car key

The first approach (Fig 5.1 (a)) uses a while loop to solve the problem. Here loop checks the box
in each iteration; if it has another box; it extracts and adds it to the list. The working of the while
loop is already discussed in section 3.4.1.

The second approach (Fig 5.1 (b)) uses a recursive function where it opens the box, and if it has
another box, it opens it again. This process will continue until the key fond.

Both approaches did the same thing but in the second approach, we can visualize the solution more
easily. There are no performance benefits by using recursion approach. However, it is preferred
over iterative approach because of the simplicity.

156 | Recursion and Recursive Solutions

Note: The recursive function calls itself to solve a problem, but it may become an infinite loop
(see Fig 5.2 (a)). To avoid infinite calling, we add the base case (Fig 5.2 (b)), which stops the
recursive call when satisfied and returns the results.
An exception will occur due to stack overflow if the base condition is not specified in recursion
(This situation occurs when all the allocated space in a program is consumed by function calls.).

Fig. 5.2: Representation of the base and recursive case

Let’s take an example to calculate the factorial with the help of recursion in C programming.

Fig 5.3 Demonstration of the recursive function

Suppose the user entered 3 to calculate factorial. The function factNumbers(3) will call in line 8
(shown in Fig 5.3). The calling information of the function is stored in the stack structure (first

Computer Programming: Theory and Practicals | 157

come, last out), known as the call -stack. The top of the call-stack represents the latest function
call. After meeting the base condition, each function will pop from the call stack and replace it with
the return value. This process will continue until the call-stack does not empty. An illustration of
the function calling with respect to the call stack is shown in Fig 5.4.

Output
Enter a number to calculate factorial: 3
Factorial of 3 = 6

Fig 5.4 Step-by-step working of the recursive function

5.2 Types of recursions

Recursion is divided into two types: direct recursion and indirect recursion.

5.2.1 Direct recursion
When a function call itself directly is known as direct recursion. Direct recursion is also further
divided into four types.

a. Tail recursion

158 | Recursion and Recursive Solutions

In the tail recursion, the recursive call statement is written at last. Nothing is left to execute after
the recursive call in the tail recursion (shown in Fig 5.5).

Fig 5.5 Demonstration of the tail recursion

Output
3 2 1

b. Head recursion

In the head recursion, the recursion call statement is written as the first statement (shown in Fig
5.6).

Fig 5.6 Demonstration of the head recursion

Output
1 2 3

Computer Programming: Theory and Practicals | 159

 c. Linear and tree recursion

If a recursive function calls itself only one time, then it is known as linear recursion. If a recursive
call executes more than one time is known as the tree recursion.

Fig 5.7 Demonstration of the tree recursion

Lines 7 and 8 both are called the function recursively (shown in Fig 5.7)

Output
3 2 1 1 2 1 1

d. Nested recursion

When a recursive function passes the parameter as the recursive call is known as nested recursion.

Fig 5.8 Demonstration of the nested recursion

160 | Recursion and Recursive Solutions

In the above example, line number 7 (shown in Fig 5.8) shows the nested recursion where
nestedRecursion() function calls by the argument (parameter) nestedRecursion().

Output
Result= 85

5.2.2 Indirect recursion

In this type of recursion more than one function call to each other in a circular manner. In Fig 5.9
we can clearly see that, recFunction1 calls recFunction2, recFunction2 calls
recFunction3, and recFunction3 calls recFunction1 which is the circular call. So, we can
say the recFunction1 call itself indirectly. The demonstration of the indirect recursion is shown
in Fig 5.10.

Fig 5.9 Graphical representation of the indirect recursion

Fig 5.10 Demonstration of the indirect recursion

Computer Programming: Theory and Practicals | 161

Output
8 6 4 2

5.3 Recursive Solutions

Many of the classical problems are solved by the recursion technique. Here we are going to discuss
some basic problems that are solved using recursion.

5.3.1 Factorial

Factorial is a basic problem that is solved by recursion. In that, we create a recursive function that
calculates the multiplication of the two numbers. Here, the first operand will be the received
number, and the second operand will be returned by the recursively called function (Recursive
function called by a number -1).

Pseudocode (recursive):

The demonstration of the factorial problem using the C programming language is already discussed
in Fig 5.3.

5.3.2 Towers of Hanoi
A tower of Hanoi is a mathematical puzzle which
solved using the recursion technique. In that, we
have numerous disks with different sizes.
Initially, all disks are stacked in one peg. We have
to calculate the minimum number of steps to
move the whole stack into another peg. The rule
is that the larger disk cannot be stacked over the
smaller disk, and at a time, only one disk can be
moved. The diagrammatic view of the Tower of
Hanoi is shown in Fig 5.11.

Fig 5.11 Tower of Hanoi

162 | Recursion and Recursive Solutions

Pseudocode (recursive):

Fig 5.12 shows the demonstration of the Tower of Hanoi using the C programming language. In
that, we can see line 7 recursively call the function tower_Hanoi, which tells the movement of
the disk from one peg to another.

Fig 5.12 Demonstration of the Tower of Hanoi

Output

Computer Programming: Theory and Practicals | 163

5.3.3 Binary search

A binary search tree is an algorithm to search for an element in the sorted array. In this technique,
the search element is matched with the middle element of the array. If it is greater than the middle
element, then the possibility of the elements belonging to the left of the middle will be zero, and
the subsequent search will be performed between middle+1 and the last element. If the element is
less than the middle, then the following search will be performed between the first and middle-1
elements. If both conditions are false, the element will equal the middle element, and the search
will be finished. To divide the array from the middle, the recursive technique is used. So, we can
say the binary search technique is a recursive base solution for the search. For example, suppose
we have a sorted array containing 7 elements and want to search a 13. The graphical representation
of the search 13 using the binary search is shown in Fig 5.13.

Fig 5.13 Graphical representation of the binary search

Steps to search an element using a binary search algorithm:

Step 1: Initialize the sorted array
Step 2: Find the middle element of the array
Step 3: Match the middle element with the searched element (key)
 if middle < key

 drop the left side list of the middle and go back to step 2
if middle > key

 drop the left side list of the middle and go back to step 2
 else
 return the index of the middle element and go to step 4
Step 4: End

164 | Recursion and Recursive Solutions

Fig 5.14 Demonstration of the Binary Search

In Fig 5.14, lines 10 and 11 are performed a recursive call that divides the array into two parts in
every call. Let’s suppose the user entered 13 and 6 elements to search.
Output
Enter element to be searched 13
Element is found at index 4

Enter element to be searched 6
Element is found at index 1

Scan QR for

solution

Question 5.1 How we can find Greatest Common Divisor of two
integers using the recursion?

Computer Programming: Theory and Practicals | 165

UNIT SUMMARY

Introduction
● When a function calls itself (directly or indirectly), then it is known as the recursion in the C

programming language.
● Recursion is a technique that breaks complex problems into small subproblems.

Types of recursions
● There are two types of recursion, Direct recursion and Indirect recursion.
● Direct recursion, when a function calls itself directly, is known as direct recursion. It is further

divided into four types: Tail recursion, Head recursion, Linear and tree recursion, and Nested
recursion.
o In the tail recursion, the recursive call statement is written at last.
o In the head recursion, the recursive call statement is written as a first statement.
o If a recursive function calls itself only once, it is known as linear recursion, and if it executes

more than one time is known as tree recursion.
o In nested recursion, a recursive function passes the parameter as a recursive call.

● In Indirect recursion, more than one function circularly calls to each other.

Recursive Solutions

● We solved some classical problems using the recursion technique.
o Factorial is a basic problem that is solved by recursion. We create a recursive function that

calculates the multiplication of the two numbers.
o A tower of Hanoi is a mathematical puzzle that is solved using the recursion technique. Initially,

all disks are stacked in one peg. We have to calculate the minimum number of steps to move the
whole stack into another peg.

o A binary search tree is an algorithm to search for an element in the sorted array. The recursive
technique is used to divide an array from the middle.

EXERCISES

Multiple Choice Questions

1. To store the information of the recursive call, which data structure is used?
(a) queue
(b) stack
(c) array
(d) None of these

2. A recursive function without base condition becomes an __________.
(a) Normal function
(b) Infinite loop
(c) Finite loop
(d) None of these

166 | Recursion and Recursive Solutions

3. Which type of problem will not solve by the recursion?
(a) Tower of Hanoi
(b) Greatest common divisor
(c) Problems without base case
(d) None of these

4. If more than one function calls one and another in a circular way, then it is known as _______.
(a) Indirect recursive
(b) Direct recursive
(c) Two-way recursion
(d) None of these

5. Which one is true in respect of the recursion?
(a) Recursion provides the simple way to provide the solution
(b) Stack data structure is used to call the recursive function
(c) Recursion requires more memory than an iterative function
(d) All of these

Answers to Multiple Choice Questions (MCQs).

1. (b) 2. (b) 3. (c) 4. (a) 5. (d)

Output-based Questions

What will be the output of the following programs?

A
#include <stdio.h>
void recFun(int var)
{
 if(var > 0)
 {
 recFun(--var);
 printf(“%d”,var);
 recFun(var--);
 }
}
int main()
{
 int var = 3;
 recFun(var);
 return 0;
}

B
#include<stdio.h>
recFunc(int var1)
{
 int var2;
 if(var1<=1)
 return 1;
 else
 var2=(var1+1)*recFunc(var1-1);
 return var2;
}
int main()
{
 int var;
 var=recFunc(5);
 printf(“%d”,var);
}

Computer Programming: Theory and Practicals | 167

C
#include<stdio.h>
int main()
{
 int var;
 var=recFun(10);
 printf(“%d”,var);
}
int recFun(int var)
{
 if(var>0)
 {
 printf(“HI”);
 recFun(var--);
 }
 else
 return 0;
}

D
#include<stdio.h>
int recFun(int);
int main()
{
 int var=9;
 printf(“%d”,recFun(var));
}
int recFun(int var)
{
 if(var>0)
 return(var+recFun(var-
2));
 else
 return 0;
}

E
#include<stdio.h>
void funRec(int var)
{
 if (var > 0)
 {
 funRec(var – 2);
 printf(“%d “,var);
 funRec(var – 2);
 }
}
int main()
{
 funRec(4);
 return 0;
}

F
#include<stdio.h>
int recFun(int var1, int var2)
{
if(var1==0)
 return 0;
else
 return recFun(var1/2, 2*var2)-
var2;
}
int main()
{
printf(“%d”,recFun(1,2));
return 0;
}

Answers of output-based Questions

A. 0102010 B. 360 C. print HI infinite times D. 25 E. 2 4 2 F. -2

Short and Long Answer Type Questions

1. Fill in the blanks
(a) When a function calls itself, then it is known as the_____________.
(b) In the tail recursion, the recursive call statement is written at __________.
(c) In an __________ recursion, two or more functions call each other in a circular manner.

168 | Recursion and Recursive Solutions

(d) When a recursive function passes the parameter as the recursive call is known as the
___________ recursion

(e) It is a _______ recursion if the recursive function calls itself more than one time.

Answers:
(a) recursion (b) last (c) indirect (d) nested (e) tree

PRACTICAL

1. Write a program to ask the user to enter an integer number and perform the following operations
using recursion:
(a) Count the total number of digits present in a number.
(b) Count the sum of even digits of the number.
(c) Count the sum of the odd digits of the number.
(d) Count the sum and average of all the digits of a number.

2. Write a program to print the Fibonacci series using the recursion where the number of the terms
to be printed will be entered by the user.

3. Using the recursion, write a program to check whether an entered number is a palindrome or
not. (Hint: 23432 is a palindrome while 23231 is not)

4. Create a C program that uses recursion to convert a decimal number into binary.

5. Create an array of size n; find all possible combinations of the m elements in the array and print
them.
For example: suppose entered array is {2,4,6,8} and the value of m is 2 then the output
should be {2,4},{2,6},{2,8},{4,6},{4,8}, and {6,8}.

KNOW MORE

Command line arguments

In the C programming language, the most important function is the main() function. The compiler
always looks to execute whatever is written or referenced inside the main function. In most of the
programs, the main function is defined without arguments.

int main()

{

 /* code… */

}

We can also write the main function with arguments, which are known as command-line arguments.
With the command line arguments, the main function is defined using two arguments. The first

Computer Programming: Theory and Practicals | 169

argument keeps the count of the passed arguments, and the second one is the pointer-type array,
which refers to each passed argument. Command line arguments are given after the program's name
in the command line.

Definition of the main function using the command line arguments:

int main(int argcount, char * argvalue[])

{

 /* code… */

}

or

int main(int argcount, char ** argvalue)

{

 /* code… */

}

Here argcount is used to store the count of the passed arguments, including the program's name,
and argvalue is used to store the given (passed) data. If the value of argcount is greater than 0,
then the array argvalue (from argvalue[0] to argvalue[argcount-1]) contains pointer to
string. The first block of the array contains the name of the program (argvalue[0]), and other
blocks from argvalue[1] to argvalue[argcount-1] contain the list of the entered arguments.
Run the following code on the Linux machine.

Fig 5.15 Demonstration of the command line arguments

In the above example (Fig 5.15), we have used command line arguments received in line 2. Now,
we compile the code on the Linux machine, which generates an object file (a.out), and to run the
code, we use the command ./a.out followed by I am a programmer (command line
argument).

170 | Recursion and Recursive Solutions

Commands are written for the execution of the above code:

$ gcc FileName.c // a.out file will create after the successful compilation

$./a.out I am a programmer

Output

The value of argcount is: 5
Value in first block ./a.out
The supplied arguments:
I
am
a
programmer

REFERENCES AND SUGGESTED READINGS

1. Deitel, P. J. (2015). C how to Program: With an Introduction to C++ (Chapter 5). Pearson
Education India.

2. David Griffiths and Dawn Griffiths (2011). Head First C, O'Reilly Media, Inc

3. https://nptel.ac.in/courses/106104128

4. https://nptel.ac.in/courses/106105171 (week 8 video lectures)

Dynamic QR Code for Further Reading

The author has created supporting video lectures for each unit. Readers are
encouraged to watch the lectures to better understand the topics covered in
Unit V. However, it is advised to read the book units first and then see the
videos. The video lectures may not cover the whole unit but are provided as
supplementary material.

Computer Programming: Theory and Practicals | 171

APPENDICES

APPENDIX-A

Standard Library Functions

Standard library functions are predefined and can be used by including the respected library in the
program. In the book, we have already discussed some basic library (predefined) functions
like printf(), scanf(), gets(), and puts(). Books based on C programming can not be completed
without the library functions. C programming has too many library functions, and all of these
are not possible to discuss here. This section includes the most popular and used standard
library functions with the sort description. There are some dedicated books for all library
functions, like Waite group’s, Turbo C Bible, written by Nabjyoti Barkakti.

The standard library functions are classified into different categories. Following is the list of library
functions based on the categories.

Arithmetic Functions

Function System Include File Description

pow math.h This function calculates the power of a value

exp math.h Calculate the exponential e to the nth power

abs stdlib.h Calculates an integer's absolute value

floor math.h Find out the largest integer number but less than the given
float number.

fmod math.h Return the remainder of the float value

fabs math.h Calculate the absolute value

cos math.h Find the cosine of the given value

cosh math.h Find the hyperbolic cosine of the given arguments

log math.h Return the natural logarithm value

log10 math.h Return the logarithm value by base 10

sqrt math.h Return the square root of the given value

tan math.h Return the tangent of the given arguments

172 | Appendices

tanh math.h Calculate the hyperbolic tangent of the passed argument

sin math.h Find the sine of the passed argument

sinh math.h Find the hyperbolic sine of the passed argument

Data Conversion Functions

Function System Include File Description

atoi stdlib.h Changes string to integer (int)

atof stdlib.h Changes string to float number (float)

atol stdlib.h Changes string to long

itoa stdlib.h Changes integer (int) to string

ltoa stdlib.h Changes long to string

ultoa stdlib.h Changes unsigned long to string

strtod stdlib.h Changes string to double

strtol stdlib.h Changes string to long integer (long int)

strtoul stdlib.h Changes string to unsigned long integer

fcvt stdlib.h Changes float value to string

gcvt stdlib.h Changes float value to string

ecvt stdlib.h Changes float value to string

Searching and Sorting Functions

Function System Include File Description

qsort stdlib.h Sort the given data using the quick sort algorithm

lfind search.h Search the given element using the linear search

bsearch stdlib.h Use the binary search to find the given number

Computer Programming: Theory and Practicals | 173

String Manipulation Functions

Function System
Include File

Description

strcpy string.h Copies the source string into the destination string

strchr string.h Finds the first occurrence of the given character in a string

strcmp string.h Performs character-by-character comparison between two strings

strcmpi string.h Compares two given strings without care for the letter case.

strdup string.h Creates a new string, which is the duplicate of the given string

strlen string.h Finds the length (number of the characters) of the given string

strcat string.h Concatenates the given two string

strncpy string.h Copies up to n characters from the source string to the destination

strrev string.h Reverse the given string

strstr string.h Returns a pointer to the starting of the first occurrence of the second
string within the first string

strupr string.h Converts the given string into the uppercase

I/O Functions

Function System Include File Description

fopen stdio.h Used to open or create a file with specific attributes like ‘a’,
‘w’, and ‘r’

fclose stdio.h Used to close the file

fgetc stdio.h Used to read a character from the file

fgetchar stdio.h Used to read a character from the keyboard

fgets stdio.h Used to read a specific file line by line

fputs stdio.h Used to put lines of characters into the specific file

fscanf stdio.h Used to read formatted data from the file

174 | Appendices

fseek stdio.h Used to shift file pointer location to the specific place

APPENDIX-B

Creating Libraries

In C programming user can create its own libraries, which can contain several user-defined
functions and can be used in the future. Let us suppose we want to create a library that contains
some user-defined functions like addNumber(), subNumber(), multiNumber(), and
divNumber(). As the name suggests, the functions addNumber(), sunNumber(),
multiNumber(), and divNumber() perform the arithmetic operations (addition, subtraction,
multi[plication, and division, respectively) and return the results. To create the library following
are the steps to follow.

Note: The following process is for the Turbo C/C++ compiler. It can differ for the other compiler.
a) Create a file, say my_functions.c without main function and define the user defined

functions addNumber(), subNumber(), multiNumber(), and divNumber.
b) Next create a new file with extension .h says my_functions.h and inside it declare all the

used functions addNumber(), subNumber(), multiNumber(), and divNumber(). The
declaration of the functions is shown below:

double addNumber(double, double);

double subNumber(double, double);

double multiNumber(double, double);

double divNumber(double, double);

c) Go to the menu, and choose the menu-item ‘Application’. The dialog box will pop up. Choose
the ‘Library’ option and press OK.

d) To compile the file, press Alt F9. After the compilation, my_functions.lib library file will
be created.

Now the library is ready to use. We can use all the functions defined inside the
my_functions.lib library by including it in the program. Following are the steps to
include the user-defined library and use their functions.

a) Create a new file with extension c say fileName.c and write the following code.

#include " my_functions.h "

main()

{

 double resAdd, resMulti;

 resAdd = addNumber (20.5, 10.2);

 resMulti = multiNumber (13.0, 5.0);

Computer Programming: Theory and Practicals | 175

 printf ("Addition: %lf\n, resAdd);

 printf(“Multiplication: %lf”, resMulti);

}

Note: The file my_functions.h should be in the same directory as the file filename.h. If both
files are in a different directory, then mention the proper path while including the
my_functions.h header file.

b) Next to create a project, select “Open Project’ from the project menu. The dialog box will
appear. Write the project’s name, say projName.prj and press OK.

c) Now select ‘Add Item’ from the ‘project’ menu. A file dialog box will pop up. To add the file
in this project, choose the file fileName.c and elect ‘Add’. Now follow the same process to
add the library file my_function.lib. At the end press ‘Done’.

d) To compile and run the project press Ctrl F9.

APPENDIX-C

List of suggested topics for practical

Sr.	No	 Topics	for	Practical	

1 Familiarization with programming environment (Editor, Compiler, etc.)

2 Programs using I/O statements and various operators

3 Programs using expression evaluation and precedence

4 Programs using decision making statements and branching statements

5 Programs using loop statements

6 Programs to demonstrate applications of n dimensional arrays

7 Programs to demonstrate use of string manipulation functions

8 Programs to demonstrate parameter passing mechanism

9 Programs to demonstrate recursion

10 Programs to demonstrate use of pointers

11 Programs to demonstrate command line arguments

12 Programs to demonstrate dynamic memory allocation

13 Programs to demonstrate file operations

176 | References

REFERENCES FOR FURTHER LEARNING

1. Lundqvist, I. Kristina. "Introduction to Computers and Programming." (2004).
2. B. L. Juneja and Anita Seth, Programming for Problem Solving (2019) Published by

CENGAGE INDIA, 2019, ISBN 10: 9387994600ISBN.
3. Deitel, P. J., & Deitel, H. M. (2016). C: How to program; with an introduction to C++.

Pearson.
4. R. S. Salaria, Programming for Problem Solving (All India). Khanna Publishing House,

ISBN: 9789389139112, 2021
5. Miller, Dean, and Perry, Greg. C Programming Absolute Beginner's Guide. United

Kingdom, Pearson Education, 2013.
6. Ritchie, Dennis M., and Kernighan, BrianW.. The C programming.

language India, Prentice Hall, 1988.
7. Balagurusamy, E.. Programming in ANSI C. India, McGraw Hill Education (India)

Private Limited, 2019.
8. Yashavant P. Kanetkar. Let Us C, Eighth Edition (8th. ed.). Jones and Bartlett Publishers,

Inc., USA, 2008
9. Gottfried, Byron S.. Schaum's Outline of Programming with C. United

Kingdom, McGraw-Hill Education, 1996.

Computer Programming: Theory and Practicals | 177

CO AND PO ATTAINMENT TABLE

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after
the completion of the course and a correlation can be made for the attainment of POs to analyze the
gap. After proper analysis of the gap in the attainment of POs necessary measures can be taken to
overcome the gaps.

Table for CO and PO attainment

Course

Outcomes

Attainment of Programme Outcomes

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation)
PO‐1 PO‐2 PO‐3 PO‐4 PO‐5 PO‐6 PO‐7

CO‐1

CO‐2

CO‐3

CO‐4

CO‐5

CO‐6

The data filled in the above table can be used for gap analysis.

178 | Index

INDEX

A
Addition 32

Addressof operator 41

Alphanumeric 15

AMD 11

ampersand(&) 117

AND operator 36

arg_list 128

Arithmetic 9

Arithmetic Operators 32

Array 111

Assembly language 7

Assignment 33

Assignment Operators 32

Associativity 47

asterisk (*) 118

auto 140

B

Basic elements 14

Binary Operators 31

Binary search 163

Bitwise Operator 39

break 91

C

C programming 9

Calculator 4

Call by Reference 134

Call by value 133

Calling 123, 130, 132

calloc() 117

char 16

char (signed) 16

Character constant 15

Code Editor 10

Code reusability 127

Column-major 126

Compiler 10, 11

Computational thinking 3

Computer memory 6

Computing devices 4

Conditional operator 31, 45

Constant 15

Continue statement 92

Control Instruction 9

Control Statements 72

CPU 5 ,9 ,11

D

Data Types 15

Decision 107

Declaration 18

Declarative knowledge 3

Declaration 128

Decrement of a pointer 119

Direct recursion 157

Division 32, 33

double 16

do-while loop 89

E

Eclipse 11

Entry control loop 85

Escape sequence 55

Execution 10

Exit control loop 89

Explicit-type 45, 47

Expressions in C 31

extern 140, 141

F

Factorial 161

fclose 58, 173

Field width 56

File 58

FILO 116

First Program 4, 10

float 16

Flowline 107

fopen 58, 173

for loop 86

Function name 128

Function 127, 128, 129, 130, 132

Function Calling 132

Function body 128

G

goto 98

H

Head recursion 158

Heap 117

I
Identifiers 14

IDEs 11

if statement 72

if-else 74

if-else-if 76

Imperative knowledge 3

Implicit 45, 46

Increment of a pointer 119

Increment operator 42

Computer Programming: Theory and Practicals | 179

Indirect recursion 160

Initialized data segment 114

Inner loop 97

Input-Output 5, 19, 51, 107

Instructions 9

int 16

int (signed) 16

Intel microprocessor 7

K

Keywords 14

L

LIFO 116

Linear 11

Loader 11

Logical NOT 38

Logical Operator 36

M
Machine language 7

malloc() 117

MATLAB 8

Memory 5

Memory allocation 114

Memory Organization 114

Modulo Operator 32

Multidimensional Array 123

Multiple-line comments 13

Multiplication 32

N

Naming Rules 18

Natural language 7

nested if-else 78

Nested loop 96

Nested recursion 159

NetBeans 11

NOT operator 38

Null Pointer 120

Numeric 15

O

Operators in C 19, 35, 39

OR operator 37

Outer loop 97

P

Passing Array 137

Pointers 117, 118, 119

Post-decrement 42

Post-increment 42

Precedence 47

Precision 56

Pre-decrement 42

Pre-define Function 19

Pre-define Syntax 19

Preprocessor 10

Primary expression 31

printf 20, 51

Printing characters 55

Printing strings 55

Process 107

Product 33

program_file 59, 60, 61

Programming 8

Pseudocode 161, 162

R

realloc() 117

Recursion 155, 157

Register 140, 142

Relational Operator 34

Reminder 33

Repetition 72, 83

Representation in an array 114

return data_type 128

row-major 126

S

scanf 20, 57

Selection Statement 72

Semantic 8

Separators 14

short int (signed) 16

Single-line comments 13

sizeof 14, 41, 119

Stack 116

Statics Semantic 8

Static 140, 142

stdio.h 10

Storage classes 140

Stored address 118

Stored program 5

String as Array 121

String constant 15

Subtraction 32

Summation 33

switch 82

Syntax 8

T

Tail recursion 158

Terminal 107

Ternary Operator 31, 44

Text segment 115

Towers of Hanoi 161

Tree recursion 159

Turbo C 11

180 | Index

U

Unary minus 41

Unary Operator 31, 41

Unary plus 41

Uninitialized data segment 115

unsigned char 16

unsigned int 16

unsigned long int 16

V
Variables 15, 17

Visual Studio 11

void 16

Void pointer 120

W

while loop 85

Wild pointer 120

Computer Programming: Theory and Practicals | 181

